Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] diretta F(λ,U) di tutti i sottospazi N(μ,U) per μ≠λ è invertibile, mentre la sua restrizione a N(λ,U) è nilpotente. Per la funzione razionale di λ∈ℂ, a valori nell'algebra di Banach End(E) di dimensione n2, si può scrivere
[12] formula
dove λj (con ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] Birkhoff se esiste è unica (sotto opportune condizioni di regolarità). Nel caso in cui G è un gruppo di Lie nilpotente complesso semplicemente connesso, l'esistenza e unicità della decomposizione di Birkhoff vale per un qualunque γ. Quando il cappio ...
Leggi Tutto
nilpotente
nilpotènte agg. [comp. del lat. nil «niente» e di potente (con riferimento a potenza nel sign. matematico)]. – In algebra, si dice di un elemento di un anello diverso dall’elemento nullo che, elevato a una potenza opportuna, dà...