• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
3 risultati
Tutti i risultati [29]
Storia della matematica [3]
Matematica [6]
Fisica [5]
Analisi matematica [5]
Fisica matematica [3]
Temi generali [3]
Economia [2]
Storia della fisica [2]
Meccanica [2]
Meccanica dei fluidi [2]

massimi e minimi

Enciclopedia on line

Espressione con cui si indica l’argomento di molte ricerche matematiche, intese a individuare le massime e le minime grandezze tra un certo numero di grandezze assegnate, oppure i valori massimi e minimi [...] m. vincolati vanno cercati tra le soluzioni del sistema [1]; tale procedimento è detto metodo dei moltiplicatori di Lagrange. M. vincolati per le funzioni di più di due variabili.- Sia w=f (x1, x2,..., xn) la funzione data, siano ϕ1 (x1, x2,..., xn ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
TAGS: METODO DEI MOLTIPLICATORI DI LAGRANGE – FUNZIONI DI DUE O PIÙ VARIABILI – INSIEME DI DEFINIZIONE – SPAZIO TOPOLOGICO – FUNZIONE CONTINUA

L'Ottocento: matematica. Calcolo delle variazioni

Storia della Scienza (2003)

L'Ottocento: matematica. Calcolo delle variazioni Craig Fraser Calcolo delle variazioni Il problema di Euler Nel 1744 Leonhard Euler formulò il problema principale del calcolo delle variazioni nei [...] nel 1806 Lagrange aveva mostrato come ottenere le corrispondenti equazioni differenziali variazionali mediante l'ausilio di un'opportuna funzione F. Essa si ottiene per mezzo della cosiddetta 'regola dei moltiplicatori': si moltiplica ciascuna delle ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. Le equazioni differenziali

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Le equazioni differenziali Silvia Mazzone Clara Silvia Roero Le equazioni differenziali E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] quest'ultima egli inoltre affronta, per la corda di lunghezza l, il problema con le condizioni moltiplicatore") M(x,y,z), la forma differenziale dz−pdx−qdy diventi esatta e dunque l'equazione differenziale dz−pdx−qdy=0 sia integrabile. Lagrange ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali