La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] luce da Werner Heisenberg (e in seguito spiegato a un livello più matematico da Max Born, Ernst Pascual Jordan, Paul Dirac e dai fisici dei contiene sia il termine di Einstein-Hilbert sia il Modello standard? La risposta è molto semplice: la 'parte ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] linguaggio. In una parola, al giorno d'oggi c'è una matematica o delle matematiche? (ibidem)
La risposta che dà Bourbaki non è in fondo diversa mostrerà Hilbert nel 1901, si tratta solo di un modello locale e non globale.
Un approccio globale è dato ...
Leggi Tutto
L'Ottocento: matematica. Equazioni differenziali alle derivate parziali
Thomas Archibald
Equazioni differenziali alle derivate parziali
Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] i problemi fisici. Uno di questi, certamente il più diffuso, riduceva la realtà fisica soggiacente a un modello ideale da descrivere poi matematicamente. L'altro approccio era di tipo fenomenologico: non si occupava dei processi ultimi ma cercava di ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Geometria pratica
Hélène Bellosta
Geometria pratica
Nella classificazione delle scienze di al-Fārābī figura la categoria dei 'procedimenti [...] assieme a un complesso di discipline, nelle quali si mescolano scienze matematiche ed elementi materiali, a dimostrazione che a quel tempo (X sec una lima che ha la stessa curvatura del modello. Ciò lascia pensare che probabilmente questi specchi, ...
Leggi Tutto
L'Universo matematico
John D. Barrow
(Astronomy Centre, University of Sussex, Brighton, Gran Bretagna)
Parte di questo saggio è stata pubblicata sotto il titolo Perché il mondo è matematico? Roma-Bari, [...] di scienze sociali o di economia, per esempio - piuttosto che tra i matematici stessi. La sua influenza si vede nel proliferare di testi con titoli del tipo Modellimatematici dei fenomeni sonori, mentre un centinaio di anni fa, per pubblicizzare la ...
Leggi Tutto
Solitoni
Francesco Calogero
SOMMARIO: 1. Introduzione: cenno storico. 2. Soluzione di equazioni lineari di evoluzione mediante la trasformata di Fourier. 3. L'equazione di Korteweg-de Vries. 4. La [...] e i l'unità immaginaria. Un problema tipico della fisica matematica, e più generalmente della matematica applicata, è quello in cui la funzione u è delle reti elettriche alle generalizzazioni dei modelli alla Volterra di equilibrio ecologico, di ...
Leggi Tutto
Geometria differenziale
Simon M. Salamon
SOMMARIO: 1. Introduzione: le origini. 2. Proprietà delle superfici. 3. Studio della curvatura gaussiana. 4. Dimensioni superiori. 5. Varietà e topologia. [...] quello avvenuto in anni recenti.
Iniziamo con una serie di commenti di tipo matematico illustrando il significato della (1). La circonferenza è un modello per la curvatura delle curve piane, essendo il luogo dei punti aventi distanza costante ...
Leggi Tutto
Scienza greco-romana. La geometria da Apollonio a Eutocio
Reviel Netz
La geometria da Apollonio a Eutocio
Il periodo di formazione del canone geometrico greco si estende dal 200 a.C. al 550 d.C., come [...] breve, una retta minima è la retta più corta (come di norma nella matematica greca, ‘retta’ è da intendersi spesso, come qui, ‘segmento di retta’) le loro forze di plasmare sé stessi secondo il modello di una classicità che veneravano e, in genere, ...
Leggi Tutto
Scienza greco-romana. La scienza greca e l'Oriente
André Pichot
La scienza greca e l'Oriente
La scienza e la filosofia sono state a lungo considerate il frutto del 'miracolo greco', un frutto incomparabile [...] esso fosse: politico, filosofico o scientifico. Ma è probabilmente intervenuto anche un altro fattore, cioè la matematica come modello della vera conoscenza. La ricerca dell'intelligibilità, inerente alla democrazia, non poteva che favorire, di ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. La sintesi newtoniana
Maurizio Mamiani
La sintesi newtoniana
Le opere maggiori di Newton
Isaac Newton rese pubbliche due sole opere, destinate [...] , l'ampia diffusione e fortuna. L'Opticks fu accolta come il modello di una scienza sperimentale indipendente da spiegazioni meccanicistiche e da complicati calcoli matematici.
Nonostante la teoria della diversa rifrangibilità dei raggi di luce fosse ...
Leggi Tutto
modello
modèllo s. m. [lat. *modĕllus, dim. di modŭlus: v. modulo]. – 1. a. In genere, qualsiasi oggetto reale che l’artista si propone di ritrarre, o che un artigiano, un operaio abbia dinanzi a sé per costruirne un altro uguale o simile,...
matematica
matemàtica (ant. e raro mattemàtica) s. f. [dal lat. mathematĭca (sottint. ars), gr. μαϑηματική (sottint. τέχνη); v. matematico]. – 1. a. Originariamente, la scienza razionale dei numeri (aritmetica, intesa come scienza della quantità...