• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
il chiasmo
lingua italiana
45 risultati
Tutti i risultati [513]
Matematica [45]
Letteratura [125]
Biografie [115]
Lingua [48]
Arti visive [36]
Fisica [24]
Archeologia [28]
Temi generali [24]
Metrica [22]
Storia [21]

Probabilita

Enciclopedia delle scienze sociali (1997)

PROBABILITÀ Italo Scardovi Giorgio Dall'Aglio Misura della probabilità di Italo Scardovi La probabilità come numero reale Nel parlar comune, 'probabilità' è parola che esprime incertezza, ora per [...] né sicuramente vincente né sicuramente perdente. Alla metrica della scommessa si rifaceva già Immanuel Kant. Sotto A) + 0·[1 ‒ P(A)] = P(A). Anche nell'impostazione classica (e, in modo analogo, in quella frequentista) si può dare un significato alla ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: LEGGE DEI GRANDI NUMERI – RIVOLUZIONE SCIENTIFICA – PIERRE SIMON DE LAPLACE – TEORIA DELLE DECISIONI – MECCANICA STATISTICA
Mostra altri risultati Nascondi altri risultati su Probabilita (12)
Mostra Tutti

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica Umberto Bottazzini Filosofia e pratica matematica Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] distinguono la concezione moderna di questa scienza da quella 'classica', ancora prevalente fin verso la metà del XIX secolo. idea fondamentale di Cayley è che per caratterizzare le proprietà metriche di una figura questa non vada considerata 'per sé ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] → ∣x∣ di E su R che soddisfi gli assiomi se lo spazio E è completo nella metrica d (x, y) = ∥x - y∥ (cioè ogni serie di Cauchy converge), E si per l'evoluzione temporale dei sistemi fisici (sia classici che quantistici): si dice che un operatore A ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] Gromov-Witten Φ ponendo Si può separare in questa espressione una parte classica e una parte 'quantistica'. Sia [U1],…,[UK-1] una base di centri p1,…,pn. Inoltre è possibile introdurre in C una metrica che è piatta in C{p1,…,pn} e che ha singolarità ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] funzioni o all'insieme astratto di importanti aspetti della teoria classica degli insiemi, per esempio quella di Georg Cantor (1845- L2 (per l'intervallo [a,b]) la struttura di spazio metrico, con la distanza tra due suoi elementi f e g definita ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Analisi non lineare: metodi variazionali

Enciclopedia della Scienza e della Tecnica (2007)

Analisi non lineare: metodi variazionali Antonio Ambrosetti I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] C ed è una soluzione di EL in senso classico. Per illustrare il procedimento descritto sopra, consideriamo il per qualche ϱ(x)>0, in modo che Sn munita della nuova metrica g abbia per curvatura scalare una funzione R(x) assegnata. Considereremo il ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DI SCHRÖDINGER – PROIEZIONE STEREOGRAFICA

Matematica: problemi aperti

Enciclopedia della Scienza e della Tecnica (2007)

Matematica: problemi aperti Claudio Procesi Prima di parlare dei problemi aperti nella matematica è bene riflettere su quelli che ne hanno segnato la storia passata. Sono infatti proprio questi che [...] possono allora essere scritte come 0=dF=d*F, dove * è l'operatore di Hodge associato alla metrica dello spazio di Minkowski. Le equazioni classiche di Yang-Mills, di cui quelle di Maxwell sono un caso particolare, esprimono il tensore di curvatura F ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – CONGETTURA DI BIRCH E SWINNERTON-DYER – INTERNATIONAL MATHEMATICAL UNION – METODO DI ELIMINAZIONE DI GAUSS – FUNZIONE DI VARIABILE COMPLESSA
Mostra altri risultati Nascondi altri risultati su Matematica: problemi aperti (14)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura Maurice Sion La teoria della misura Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] punto x e m indica la misura di Lebesgue. Nella teoria classica sulla retta, gli insiemi A sono intervalli contenenti x. Se nelle delle funzioni continue sull'intervallo [0,1]. Gli spazi metrici, gli spazi localmente compatti, gli spazi di Hilbert e ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Leggi di scala

Enciclopedia della Scienza e della Tecnica (2007)

Leggi di scala Luciano Pietronero Le leggi di scala riguardano il comportamento di una struttura in funzione della scala da cui la si guarda. Per i sistemi regolari, sia matematici sia fisici e naturali, [...] di interazioni senza che a essa sia associata una struttura metrica, cioè senza che la loro posizione sia definita in fa le proprietà dei network sono state rappresentate dalla teoria classica dei network aleatori introdotta da Paul Erdos e Alfred ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – INTERNET
TAGS: DISTRIBUZIONE DI PROBABILITÀ – TEOREMA DEL LIMITE CENTRALE – GRUPPO DI RINORMALIZZAZIONE – DISTRIBUZIONE DI POISSON – DISTRIBUZIONE GAUSSIANA

DE GIORGI, Ennio

Dizionario Biografico degli Italiani (2014)

DE GIORGI, Ennio Enrico Moriconi Nacque l’8 febbraio del 1928 a Lecce figlio di Nicola e di Stefania Scopinich. La madre proveniva da una famiglia di navigatori di Lussino, mentre il padre era insegnante [...] la vita volle conservare la residenza. La formazione Ottenuta la maturità classica al liceo Palmieri di Lecce, nel 1946 De Giorgi si figure poco regolari cercando di approssimarle in una metrica opportuna, tramite poligoni (se siamo nel piano) ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ISTITUTO NAZIONALE PER LE APPLICAZIONI DEL CALCOLO – ACCADEMIA NAZIONALE DELLE SCIENZE, DETTA DEI XL – PONTIFICIA ACCADEMIA DELLE SCIENZE – ACCADEMIA DELLE SCIENZE DI TORINO – EQUAZIONE ALLE DERIVATE PARZIALI
Mostra altri risultati Nascondi altri risultati su DE GIORGI, Ennio (4)
Mostra Tutti
1 2 3 4 5
Vocabolario
mètrico
metrico mètrico agg. [dal lat. metrĭcus, gr. μετρικός, der. di μέτρον «misura; metro (del verso)»] (pl. m. -ci). – 1. a. In relazione a metro nel sign. di «misura», che concerne la misura, la misurazione: i sistemi m. e monetarî usati dagli...
mètrica
metrica mètrica s. f. [femm. sostantivato dell’agg. metrico; nel sign. 1, cfr. gr. μετρική (sottint. τέχνη «arte»)]. – 1. La tecnica della versificazione, cioè il complesso delle leggi che regolano la composizione dei versi e delle strofe;...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali