• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
37 risultati
Tutti i risultati [92]
Matematica [37]
Fisica [56]
Fisica matematica [24]
Meccanica [18]
Meccanica quantistica [16]
Storia della fisica [15]
Temi generali [16]
Statistica e calcolo delle probabilita [13]
Meccanica dei fluidi [14]
Relativita e gravitazione [11]

SISTEMI DINAMICI

Enciclopedia Italiana - VI Appendice (2000)

Sistemi dinamici Franco Magri Dmitrij Anosov Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] di Hamilton in una relazione tra forme differenziali e spalanca la porta all'ingresso della 'geometria simplettica' nella meccanica hamiltoniana. Lo schema astratto a cui si perviene può essere descritto con il seguente linguaggio: un s. d. è ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONI DIFFERENZIALI DEL MOTO – EQUAZIONI ALLE DERIVATE PARZIALI – EQUAZIONE DIFFERENZIALE LINEARE – TEORIA DELLE PERTURBAZIONI
Mostra altri risultati Nascondi altri risultati su SISTEMI DINAMICI (3)
Mostra Tutti

varieta simplettiche

Enciclopedia della Scienza e della Tecnica (2008)

varietà simplettiche Luca Tomassini Una varietà differenziabile di dimensione pari M2n dotata di una struttura simplettica (o struttura hamiltoniana), ossia di una forma bilineare (o 2-forma) antisimmetrica [...] non degenere è detta quasi-simplettica. I più importanti esempi di varietà simplettica sono forniti dalla meccanica hamiltoniana. Più precisamente, se V è la varietà n-dimensionale delle configurazioni (posizioni generalizzate) di un sistema ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – MECCANICA HAMILTONIANA – SPAZIO DELLE FASI – PRODOTTO SCALARE – CAMPI VETTORIALI

meccanica

Dizionario delle Scienze Fisiche (1996)

meccanica meccànica [Der. del lat. mechanica, dal gr. mechaniké (téchne) "(arte) delle macchine"] [MCC] Nella suddivisione tradizionale della fisica, la scienza che studia le leggi del moto dei corpi, [...] , il cui insieme delle configurazioni può assumere la struttura delle varietà differenziabili: v. meccanica analitica. ◆ [MCC] M. analitica lagrangiana e hamiltoniana: v. meccanica classica: III 682 b, 683 b. ◆ [MCC] M. applicata: (a) generic., lo ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su meccanica (4)
Mostra Tutti

statistica

Enciclopedia on line

Scienza che ha per oggetto lo studio dei fenomeni collettivi suscettibili di misura e di descrizione quantitativa: basandosi sulla raccolta di un grande numero di dati inerenti ai fenomeni in esame, e [...] particella con tre gradi di libertà, anche nella meccanica statistica classica è utile assumere che la migliore determinazione critica. Nel caso di bosoni con spin zero, di massa m, con hamiltoniana di singola particella H=p2/2m, si ha Tc=3,31 ρ2/3 ... Leggi Tutto
CATEGORIA: TEMI GENERALI – FISICA MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: PRINCIPIO DI ESCLUSIONE DI PAULI – CONDENSAZIONE DI BOSE-EINSTEIN – LUNGHEZZA D’ONDA DI DE BROGLIE – DISTRIBUZIONE DI FERMI-DIRAC – CALCOLO DELLE PROBABILITÀ
Mostra altri risultati Nascondi altri risultati su statistica (15)
Mostra Tutti

campo

Enciclopedia on line

Biologia C. morfogenetico Area dell’embrione, o del primordio di un germoglio, dotata della capacità di dare origine a un determinato organo; per es., i c. morfogenetici dell’arto posteriore danno origine [...] La teoria classica del c. è formalmente analoga alla meccanica dei mezzi continui. Teoria quantistica del campo Il quantizzazione di un c. consiste nell’esprimere la forma hamiltoniana, cioè nell’esprimere l’energia del sistema a infiniti gradi ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – EMBRIOLOGIA – STORIA DELLA BIOLOGIA – ELETTROLOGIA – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – STORIA DELLA MATEMATICA – PREISTORIA – STORIA CONTEMPORANEA – IMPIANTI E STRUTTURE – SPORT NELLA STORIA
TAGS: TEOREMA FONDAMENTALE DELL’ALGEBRA – REPUBBLICA SOCIALE ITALIANA – ELETTRODINAMICA QUANTISTICA – RADIAZIONE ELETTROMAGNETICA – AMPLIAMENTO TRASCENDENTE
Mostra altri risultati Nascondi altri risultati su campo (3)
Mostra Tutti

semigruppo

Enciclopedia on line

semigruppo In matematica, insieme in cui è definita un’operazione (o legge di composizione interna) binaria associativa per la quale valgano le due regole di semplificazione a sinistra e a destra, tale [...] Questo tipo di approccio può essere convenientemente generalizzato alla meccanica quantistica, dove il s. che genera l’evoluzione temporale della funzione d’onda è dato da exp(iHt/ℏ), con H hamiltoniana del sistema. Problema delle parole per i s. Si ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – CONVERGONO UNIFORMEMENTE – EQUAZIONI DIFFERENZIALI – MECCANICA QUANTISTICA – OPERAZIONE BINARIA
Mostra altri risultati Nascondi altri risultati su semigruppo (2)
Mostra Tutti

EQUAZIONI

Enciclopedia Italiana - VI Appendice (2000)

(XIV, p. 132; App. III, i, p. 564; IV, i, p. 714; v. equazioni differenziali, App. V, ii, p. 131). Il concetto generale di e. in matematica è trattato nella voce equazioni del vol. XIV dell'Enciclopedia [...] geometrica, la classica e. di Hamilton-Jacobi della meccanica e del calcolo delle variazioni, e, più in detto sistema di Painlevé parametrizzato da v) è un sistema hamiltoniano con hamiltoniana HJ. La prima e. di Painlevé, per es., non contiene ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE – ACCADEMIA DELLE SCIENZE DI PARIGI – ACCADEMIA DELLE SCIENZE DI TORINO – EQUAZIONI ALLE DERIVATE PARZIALI – DISUGUAGLIANZA ISOPERIMETRICA
Mostra altri risultati Nascondi altri risultati su EQUAZIONI (9)
Mostra Tutti

VARIAZIONI, CALCOLO DELLE

Enciclopedia Italiana (1937)

VARIAZIONI, CALCOLO DELLE. Leonida Tonelli - È quel ramo dell'analisi matematica che studia i problemi di massimo e minimo (v. massimi e minimi) relativi a quantità variabili, che si presentano sotto [...] geodetiche, come pure in altri problemi relativi a questioni di meccanica, fondandosi su un sistema speciale di coordinate curvilinee; e : Un esempio d'integrale In è dato dall'azione hamiltoniana per la quale v. hamilton: Principio di Hamilton. Anche ... Leggi Tutto
Mostra altri risultati Nascondi altri risultati su VARIAZIONI, CALCOLO DELLE (4)
Mostra Tutti

VETTORE

Enciclopedia Italiana (1937)

VETTORE Roberto Marcolongo Matematica. - Le grandezze, che si incontrano in geometria, in meccanica, in fisica, si possono distinguere in due classi. Le une - quali, ad es., le lunghezze, le aree, i [...] , A + b = B, la (1), nella notazione hamiltoniana, si può scrivere e quindi assume l'aspetto di un'identità vettori funzioni di una variabile numerica. - La geometria e la meccanica offrono numerosi esempî di punti o vettori, funzioni di una variabile ... Leggi Tutto
Mostra altri risultati Nascondi altri risultati su VETTORE (6)
Mostra Tutti

GRUPPO

Enciclopedia Italiana - II Appendice (1948)

GRUPPO (XVII, p. 1012) Ugo AMALDI Nell'ultimo quindicennio le teorie classiche dei gruppi hanno ricevuto scarsi apporti di risultati generali. Fra questi, nel campo dei gruppi continui, spetta un rilievo [...] I, Lipsia 1937. Applicazioni della teoria dei gruppi alla meccanica quantistica. La teoria dei gruppi, e più precisamente ad una perturbazione rappresentata da un termine addittivo nell'hamiltoniana che non restringa il gruppo rispetto a cui questa ... Leggi Tutto
TAGS: TEORIA QUANTISTICA DEI CAMPI – RAPPRESENTAZIONE DEI GRUPPI – EQUAZIONE DI SCHRÖDINGER – EQUAZIONI DIFFERENZIALI – TRASFORMAZIONE LINEARE
Mostra altri risultati Nascondi altri risultati su GRUPPO (7)
Mostra Tutti
1 2 3 4
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali