L'Ottocento: fisica. Meccanica dei continui e dei sistemi discreti
Craig G. Fraser
Meccanica dei continui e dei sistemi discreti
Origine dei concetti di sforzo e di deformazione
La teoria matematica [...] intégrales indéfinies del 1762; il calcolo delle variazioni forniva il contesto matematico per le scoperte sia della meccanicalagrangiana sia di quella hamiltoniana.
Va tuttavia sottolineato che nella Méchanique analitique Lagrange mette da parte il ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] idee si possono ricondurre alle prime formulazioni dei principî di azione, alla meccanicalagrangiana e ai metodi del calcolo delle variazioni. L'analogia tra ottica e meccanica concepita da Hamilton costituisce forse l'esempio più sorprendente di ...
Leggi Tutto
Scienza che studia il moto e l’equilibrio dei corpi. È tradizionalmente divisa in tre parti: cinematica, dinamica e statica, che studiano, rispettivamente, il moto prescindendo dalle sue cause, il moto [...] per molti aspetti agli sviluppi della m. analitica è il progresso della meccanica celeste, che trova in P.-S. Laplace e poi in J.-H e sia q1, q2, ..., qn una n-pla di coordinate lagrangiane opportunamente scelte. Se il sistema è in moto, le q sono ...
Leggi Tutto
Fisica
BBruno Ferretti
di Bruno Ferretti
Fisica
sommario: 1. Introduzione. a) Obiettività secondo Poincaré. b) Storia naturale e fisica. c) Il metodo sperimentale e il metodo teorico. d) Storicità [...] della fisica.
Con il formalismo canonico, lo stato dinamico del sistema è specificato, nella meccanica classica, quando si assegnino insieme le coordinate lagrangiane qi e i loro momenti coniugati pi. Specificato lo stato dinamico del sistema isolato ...
Leggi Tutto
L'Eta dei Lumi: matematica. Meccanica e ingegneria
Massimo Corradi
Meccanica e ingegneria
Alla fine del XVII sec. e forse anche agli inizi di quello successivo, prima della formalizzazione del calcolo [...] composizione dei movimenti e sul principio dei lavori virtuali (vitesses virtuelles, nella terminologia lagrangiana), da lui considerato una specie di assioma della meccanica anche se, nella seconda edizione del suo trattato (1811), avverte che tale ...
Leggi Tutto
La seconda rivoluzione scientifica: fisica e chimica. La relativita ristretta
Arthur I. Miller
Giulio Peruzzi
La relatività ristretta
Può essere particolarmente utile studiare le origini della 'teoria [...] I. Miller
Prima del 1904, il principio di relatività della meccanica newtoniana era di solito indicato con il nome di principio del relatività. Egli ottenne questo risultato aggiungendo alla lagrangiana dell'elettrone un termine che permetteva all' ...
Leggi Tutto
La seconda rivoluzione scientifica: fisica e chimica. L'ottica e l'elettrodinamica dei corpi in movimento
Michel Janssen
John Stachel
L'ottica e l'elettrodinamica dei corpi in movimento
Il moto dell'etere
Il [...] poteva anche fare da supporto, ma che non erano associati ad alcun modello meccanico esplicito. Il fatto che fosse possibile ricavare da una funzione lagrangiana le equazioni che governano questi campi fu considerato sufficiente per caratterizzare la ...
Leggi Tutto
L'Ottocento: matematica. Meccanica analitica
Helmut Pulte
Meccanica analitica
La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] come pure, per il caso in cui il sistema meccanico sia soggetto a vincoli indipendenti dal tempo [5] e vista come una funzione del tempo:
L=T+U è la cosiddetta 'lagrangiana', cioè la differenza tra l'energia cinetica (T) e l'energia potenziale ...
Leggi Tutto
variabile
variàbile [agg. e s.f. Der. del lat. variabilis, da variare "variare"] [ANM] Di una quantità che può assumere valori in un certo insieme numerico, o, più in generale, di un simb. che rappresenta [...] : lo stesso che v. vincolata. ◆ [MCQ] V. canonica: nella meccanica classica, per un sistema a n gradi di libertà, ciascuna delle v. V. interna: lo stesso che v. di stato. ◆ [MCC] V. lagrangiana, o materiale: v. cinematica: I 598 d. ◆ [FAF] V. ...
Leggi Tutto
Hilbert, David
Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆ Azione di H.-Einstein: v. gravità [...] Equazione, o funzione, di H.-Schmidt: v. equazioni integrali: II 479 c. q Lagrangiana di H., o di H.-Einstein: v. unificazione dei campi classici: VI 400 a. connessione fra le equazioni macroscopiche della meccanica dei fluidi e l’equazione di ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...
velocita
velocità s. f. [dal lat. velocĭtas -atis, der. di velox -ocis «veloce»]. – 1. La rapidità di movimento di un corpo, tanto maggiore quanto maggiore è il cammino percorso in un dato tempo, valutabile quindi dal rapporto tra il cammino...