• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
atlante
il chiasmo
lingua italiana
webtv
273 risultati
Tutti i risultati [5437]
Matematica [273]
Diritto [748]
Biografie [604]
Storia [465]
Arti visive [411]
Fisica [344]
Temi generali [386]
Economia [334]
Medicina [305]
Archeologia [340]

Nodi e fisica

Enciclopedia del Novecento II Supplemento (1998)

Nodi e fisica Louis H. Kauffman Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] di descrivere il polinomio di Alexander (e più tardi il polinomio di Jones) nella forma di una funzione di di una coppia di particelle è rappresentata da un ‛cappello', come mostrato nella fig. 22B, vale a dire da una curva che presenta un massimo ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – GEOMETRIA
TAGS: TEORIA QUANTISTICA DEI CAMPI – FILOSOFIA DELLA MATEMATICA – EQUAZIONE DI SCHRÖDINGER – CALCOLO DELLE VARIAZIONI – RELAZIONE DI EQUIVALENZA

L'Ottocento: matematica. Meccanica analitica

Storia della Scienza (2003)

L'Ottocento: matematica. Meccanica analitica Helmut Pulte Meccanica analitica La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] riduce alla determinazione di una funzione generatrice, o principale, che soddisfi l'equazione detta oggi 'di Hamilton-Jacobi': funzione: ricerche sui problemi fondamentali della critica della conoscenza, introduzione di Massimo Ferrari, traduzione di ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – MATEMATICA APPLICATA – STATISTICA E CALCOLO DELLE PROBABILITA – METAFISICA – STORIA DEL PENSIERO FILOSOFICO

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] presenta la linearità della derivazione, la derivata di un prodotto, di una funzione inversa, di una funzione composta, di una funzione reciproca. Si dimostra il teorema di Rolle per le funzioni numeriche; e il teorema degli incrementi finiti ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. I metodi numerici

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. I metodi numerici Peter Schreiber I metodi numerici Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] limiti Δx, Δy,… ‒ e nella teoria del valore più probabile di una funzione, a partire da una serie di valori misurati e dal loro grado di precisione. La teoria dell'errore massimo doveva prendere, nel XX sec., la direzione che nell'analisi numerica ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] esistenza. Il procedimento ha sempre comportato una scelta ingegnosa di funzioni ausiliarie che soddisfino disuguaglianze alle derivate parziali ellittiche. Una delle prime importanti applicazioni del principio di massimo è stato l'uso nella teoria ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La grande scienza. Automi e linguaggi formali

Storia della Scienza (2003)

La grande scienza. Automi e linguaggi formali Dominique Perrin Automi e linguaggi formali La teoria degli automi e dei linguaggi formali ha lo scopo di descrivere le proprietà delle successioni di simboli. [...] un circuito Il calcolo del valore di una funzione booleana di n variabili dà luogo a un circuito: si tratta semplicemente di un grafo orientato aciclico con 2n nodi sorgente, e nel quale ciascun nodo è una funzione OR o una funzione AND (fig. 2). Un ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA – CIBERNETICA E INTELLIGENZA ARTIFICIALE

La grande scienza. Calcolo delle variazioni

Storia della Scienza (2003)

La grande scienza. Calcolo delle variazioni Gianni Dal Maso Calcolo delle variazioni Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] provare l'esistenza del massimo e del minimo di una funzione continua definita su un intervallo chiuso e limitato dimostra che ogni funzione semicontinua inferiormente e coercitiva ha un punto di minimo. Il teorema di esistenza di Tonelli Lo spazio ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] condizioni necessarie e sufficienti affinché una funzione fosse dotata di massimo o minimo condusse inoltre, negli ultimi trent'anni del XIX sec., a una prima versione di concetti topologici applicati a insiemi di funzioni: per esempio fu messo in ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

Analisi non lineare: metodi variazionali

Enciclopedia della Scienza e della Tecnica (2007)

Analisi non lineare: metodi variazionali Antonio Ambrosetti I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] e verificano l'equazione differenziale [3]. È anche chiara l'analogia con il caso elementare di una funzione regolare f : ℝ→ℝ. Come è ben noto, se x*∈ℝ è un massimo o un minimo di f, allora deve risultare f′(x*)=0. Se f è sostituita da un funzionale ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DI SCHRÖDINGER – PROIEZIONE STEREOGRAFICA

Computazionali, metodi

Enciclopedia della Scienza e della Tecnica (2007)

Computazionali, metodi Alfio Quarteroni I metodi computazionali permettono di risolvere con i computer, nell'ambito delle scienze applicate, problemi complessi formulabili tramite il linguaggio della [...] che ∥f−pn∥∞〈ε, ove qui e nel seguito si indica con ∥g∥∞ il massimo valore di ∣g(x)∣ nell'intervallo [a,b], g essendo una generica funzione continua. Abbiamo denotato con ℙn l'insieme dei polinomi algebrici di grado inferiore o uguale a n. Il teorema ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA
TAGS: FORMULA FONDAMENTALE DEL CALCOLO INTEGRALE – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – SISTEMA DI EQUAZIONI, LINEARI – METODO DEGLI ELEMENTI FINITI
1 2 3 4 5 6 7 8 ... 28
Vocabolario
màssimo
massimo màssimo agg. e s. m. [dal lat. maxĭmus, superl. di magnus «grande»]. – Grandissimo, il più grande. Funge da superlativo di grande (come il lat. maxĭmus rispetto a magnus) e si contrappone direttamente a minimo. 1. a. Si usa, quasi...
massimare²
massimare2 massimare2 v. tr. [der. di massimo] (io màssimo, ecc.). – Rendere massimo; è usato solo in matematica (insieme con massimizzare), nell’espressione m. una funzione, sostituire alla funzione il suo massimo valore.
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali