• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
agenda
atlante
il chiasmo
lingua italiana
544 risultati
Tutti i risultati [4434]
Matematica [544]
Fisica [695]
Arti visive [546]
Biografie [526]
Temi generali [394]
Biologia [251]
Archeologia [278]
Fisica matematica [268]
Chimica [242]
Ingegneria [222]

jacobiano

Dizionario delle Scienze Fisiche (1996)

jacobiano jacobiano (o iacobiano) [agg. e s.m. Der. del cognome di K.G.J. Jacobi] [ALG] Curva j. (o, assolut., jacobiana s.f.): di un sistema lineare doppiamente infinito (rete) di curve algebriche piane [...] λ₁f₁(x₁,x₂,x₃)+λ₂f₂(x₁,x₂,x₃)+λ₃f₃(x₁,x₂,x₃)=0 è il luogo dei punti doppi delle curve della rete. L'equazione della curva è J=0, ove J è il determinante j. (v. oltre) del sistema di polinomi f₁, f₂, f₃ ... Leggi Tutto
CATEGORIA: ALGEBRA
Mostra altri risultati Nascondi altri risultati su jacobiano (2)
Mostra Tutti

Brouwer Luitzen Egbertus Jan

Dizionario delle Scienze Fisiche (1996)

Brouwer Luitzen Egbertus Jan Brouwer 〈bràuër〉 Luitzen Egbertus Jan [STF] (Overschie, Olanda, 1881 - m. 1966) Prof. di matematica nell'univ. di Amsterdam (1951). ◆ [ALG] Grado topologico di B.: v. analisi [...] di un insieme I (sottinsieme di uno spazio euclideo) in sé stesso, esiste un punto P∈I "fisso" per f, cioè tale che f(P)=P. Il teorema di B. è suscettibile di numerose generalizzazioni: v. analisi non lineare: I 143 c e funzionale, analisi: II 771 f. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA
TAGS: MATEMATICA – AMSTERDAM
Mostra altri risultati Nascondi altri risultati su Brouwer Luitzen Egbertus Jan (5)
Mostra Tutti

operatore

Enciclopedia on line

Biologia In genetica, tratto di DNA che fa parte di un operone e condiziona la trascrizione dei geni strutturali immediatamente adiacenti (➔ operone). Filosofia In filosofia analitica, un’espressione [...] a ∈ A. Supponiamo ora che siano date due varietà lineari A e B sullo stesso corpo numerico K: un o. unario ω da A a B si dice lineare se e solo se, per ogni k1, k2 ∈ K e a1, a2 ∈ A, si ha ω(k1a1+k2a2)=k1(ωa1)+k2(ωa2). Nel caso particolare che sia B ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – GENETICA – MESTIERI E PROFESSIONI – FISICA MATEMATICA – MECCANICA QUANTISTICA – ANALISI MATEMATICA – LOGICA MATEMATICA – FILOSOFIA DEL LINGUAGGIO – METAFISICA
TAGS: QUANTIFICATORE ESISTENZIALE – GEOMETRIA DIFFERENZIALE – MECCANICA QUANTISTICA – SISTEMI DIFFERENZIALI – ANELLO DEI POLINOMI
Mostra altri risultati Nascondi altri risultati su operatore (2)
Mostra Tutti

additività

Dizionario delle Scienze Fisiche (1996)

additivita additività [Der. di additivo] [LSF] La proprietà di cui godono gli enti additivi, cioè enti per i quali vale il principio di sovrapposizione, come sono, nell'elettrodinamica lineare, in partic., [...] i campi elettrici, magnetici, elettromagnetici e i loro potenziali: v. elettrostatica nel vuoto: II 384 e; magnetismo: III 522 d. ◆ [TRM] A. a coppie: v. stato, equazione di: V 610 d. ◆ [TRM] A. dell'entropia: ... Leggi Tutto
CATEGORIA: TEMI GENERALI – FISICA MATEMATICA – TERMODINAMICA E TERMOLOGIA – ANALISI MATEMATICA

Hopf, Eberhardt

Enciclopedia on line

Matematico austriaco naturalizzato statunitense (Salisburgo 1902 - Bloomington 1983). Professore nelle università di Lipsia (1936-44), di Monaco (1944-48) e, dal 1948, nell'Indiana University, a Bloomington. [...] I suoi importanti contributi all'analisi non lineare e alla teoria delle biforcazioni hanno acquisito una crescente importanza nell'analisi non lineare che si è sviluppata negli anni Ottanta e Novanta. ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: TEORIA DELLE BIFORCAZIONI – SALISBURGO

PROBABILITÀ, Calcolo delle

Enciclopedia Italiana - III Appendice (1961)

PROBABILITÀ, Calcolo delle (XXVIII, p. 259; App. II, 11, p. 611) Giuseppe POMPILJ Tutta la moderna scienza del reale è imbevuta di "probabilità" e gli sviluppi di questi ultimi sessant'anni hanno ampiamente [...] Dalla definizione stessa della v. c. dell'estrazione in blocco segue che le H v. c. componenti soddisfano alla seguente relazione lineare: in secondo luogo data la struttura della v. c. &out;oj, sussiste l'evidente identità e finalmente, a causa ... Leggi Tutto
TAGS: VARIABILI CASUALI – MEDIA PONDERATA – NUMERI REALI – ALGORITMO – VARIANZA
Mostra altri risultati Nascondi altri risultati su PROBABILITÀ, Calcolo delle (12)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Teoria dei sistemi e controllo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Teoria dei sistemi e controllo Mark Aizerman Teoria dei sistemi e controllo La teoria del controllo si è formata, come campo di ricerca indipendente, [...] origine delle coordinate, tale che per ogni k all'interno dell'angolo delimitato dal raggio e dall'asse delle ascisse, il corrispondente sistema lineare sia stabile. Sorse la domanda: è vero che mediante la sostituzione di y=kx con y=f(x) o con y=f(t ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] x in E per i quali la funzione t → Tt (x) è differenziabile in 0. Allora A: x ∈ D (A) → Tt (x)∣t=0 =: Ax è un operatore lineare chiuso e compatto con le seguenti proprietà: 1) esiste un ω in R tale che W (ω): = {λ in C: Re (λ) > ω} ⊂ ρ (A); 2 ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

modulo

Enciclopedia della Scienza e della Tecnica (2008)

modulo Luca Tomassini Gruppo abeliano (in cui l’operazione di moltiplicazione è commutativa) unito a un anello di operatori. Un modulo è la generalizzazione di uno spazio vettoriale (lineare) su un [...] campo K (per es., i numeri reali o complessi), dove appunto K è sostituito da un anello A. Ricordiamo che un campo è un anello in cui anche la moltiplicazione (come l’addizione) è commutativa e ogni elemento ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su modulo (3)
Mostra Tutti

punti stazionari

Enciclopedia della Scienza e della Tecnica (2008)

punti stazionari Daniele Cassani Si consideri un funzionale, ovvero un’applicazione I:E→ℝ, definita su uno spazio normato E. Si ha che I è (Fréchet-) differenziabile in u∈E se esiste un’applicazione [...] per denotare il differenziale (di Fréchet) del funzionale I nel punto u∈E (si osservi che il differenziale di un applicazione lineare è l’applicazione stessa). Se la condizione precedente vale per ogni u∈E, I si dice differenziabile su E e sono detti ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: APPLICAZIONE LINEARE – DIFFERENZIABILE – SPAZIO NORMATO
Mostra altri risultati Nascondi altri risultati su punti stazionari (1)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 55
Vocabolario
lineare¹
lineare1 lineare1 agg. [dal lat. linearis]. – 1. Inerente a una linea (per lo più retta), che procede secondo una retta, o che si sviluppa prevalentemente nel senso della lunghezza: misure l., le misure di lunghezza (contrapp. alle misure...
lineare²
lineare2 lineare2 v. tr. [dal lat. lineare] (io lìneo, ecc.). – 1. Segnare con linee, tracciare linee su una superficie, rigare: macchina per l. (v. lineatrice). 2. letter. o ant. Disegnare tracciando la linea di contorno, delineare, conformare,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali