• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
atlante
il chiasmo
134 risultati
Tutti i risultati [1744]
Matematica [134]
Fisica [331]
Biografie [290]
Storia [197]
Temi generali [157]
Filosofia [134]
Diritto [127]
Astronomia [77]
Storia della fisica [86]
Fisica matematica [81]

Il Rinascimento. Verso una nuova matematica

Storia della Scienza (2001)

Il Rinascimento. Verso una nuova matematica Enrico Giusti Paolo Freguglia Pier Daniele Napolitani Pierre Souffrin Verso una nuova matematica Introduzione di Enrico Giusti A chi si volga alla matematica [...] , non era nemmeno riuscito a trovare i mezzi per imparare a leggere e a scrivere presso un maestro, e aveva dovuto arrangiarsi da movimenti, ossia la dinamica del moto violento, del moto naturale, del moto dei proiettili, del moto nei mezzi, e così ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

L'Ottocento: matematica. Calcolo delle probabilità e statistica

Storia della Scienza (2003)

L'Ottocento: matematica. Calcolo delle probabilita e statistica Ivo Schneider Calcolo delle probabilità e statistica Il ruolo di Laplace nella stocastica del XIX secolo Numerosi autori hanno contribuito [...] della direzione del moto di una molecola di gas, dovuta all'urto con un'altra molecola o con le pareti del recipiente, di ε tende a 1: per n→∞. Poisson generalizza la legge di Bernoulli dei grandi numeri, escludendo l'ipotesi dell'uguaglianza delle ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA – STORIA DELLA MATEMATICA

Variazioni, calcolo delle

Enciclopedia del Novecento II Supplemento (1998)

Variazioni, calcolo delle Giuseppe Buttazzo Gianni Dal Maso e Ennio De Giorgi SOMMARIO: 1. Introduzione.  2. Alcuni esempi storici: a) il problema isoperimetrico; b) il principio di Fermat e le leggi [...] di dimensione arbitraria. b) Il principio di Fermat e le leggi della rifrazione. Nel 1662 P. Fermat enunciò il celebre principio . II; v. fisica matematica, vol. II), le equazioni del moto di un sistema meccanico a m gradi di libertà con vincoli ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ALLE DERIVATE PARZIALI – METODO DEI MOLTIPLICATORI DI LAGRANGE – CONDIZIONI AL CONTORNO DI NEUMANN – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE DI EULERO-LAGRANGE
Mostra altri risultati Nascondi altri risultati su Variazioni, calcolo delle (4)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. La probabilità

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La probabilita Eugenio Regazzini La probabilità Evoluzione della nozione di probabilità La grande difficoltà in cui si dibattevano i cultori [...] considerare il caso degli incrementi indipendenti e 'stazionari' ('omogenei'): la legge di probabilità di Xt−Xs non dipende da s (proprio come nel caso del moto browniano e del processo di Poisson composto). Uno dei risultati più importanti ottenuti ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA

L'Ottocento: astronomia. Il problema dei tre corpi e la stabilità del Sistema solare

Storia della Scienza (2003)

L'Ottocento: astronomia. Il problema dei tre corpi e la stabilita del Sistema solare June Barrow-Green Il problema dei tre corpi e la stabilità del Sistema solare Questo capitolo illustra, a grandi [...] dei Principia nel 1687, divenne importante verificare se la legge di Newton e la sua teoria della gravitazione potessero rendere conto in modo completo del moto dei corpi celesti nello spazio tridimensionale. Newton risolse geometricamente ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. Lo sviluppo della teoria della probabilità e della statistica

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Lo sviluppo della teoria della probabilita e della statistica Oscar Sheynin Lo sviluppo della teoria della probabilità e della statistica I primi sviluppi del calcolo delle [...] evento studiato aveva probabilità p, il numero di 'successi' μ obbediva alla legge seguente: dove q=1−p. Si noti che np=Eμ e npq tridimensionale ed è un modello approssimato della diffusione e del moto browniano. Il problema fu trattato più volte da ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] il modo in cui Georg Simon Ohm stabilì, nel 1826, la legge che porta il suo nome. Forse non era una coincidenza che Ohm applicazione relativa al problema del moto di un sistema di corpi, risolto attraverso l'analisi del moto del suo centro di massa. ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Solitoni

Enciclopedia del Novecento (1989)

Solitoni Francesco Calogero SOMMARIO: 1. Introduzione: cenno storico.  2. Soluzione di equazioni lineari di evoluzione mediante la trasformata di Fourier.  3. L'equazione di Korteweg-de Vries.  4. La [...] le portino, una volta iniziato il moto, a incontrarsi. È allora chiaro che, nella fase iniziale del moto, cioè fino a che le due una, ed è l'esistenza di un numero infinito di leggi di conservazione. Una formula compatta per esprimere queste quantità ... Leggi Tutto
TAGS: INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS – EQUAZIONE ALLE DERIVATE PARZIALI – TEORIA QUANTISTICA DEI CAMPI – SPAZIO DELLE CONFIGURAZIONI – EQUAZIONE DI SCHRÒDINGER
Mostra altri risultati Nascondi altri risultati su Solitoni (4)
Mostra Tutti

Scienza greco-romana. La scienza greca e l'Oriente

Storia della Scienza (2001)

Scienza greco-romana. La scienza greca e l'Oriente André Pichot La scienza greca e l'Oriente La scienza e la filosofia sono state a lungo considerate il frutto del 'miracolo greco', un frutto incomparabile [...] acque inferiori e quelle superiori, e alla cosmologia che si può leggere tra le righe della Bibbia (soprattutto nella Genesi, 1, 6 molto lunghi. Per noi, il modello geometrico del moto degli astri rende intelligibile e trasparente il calcolo ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

Nodi e fisica

Enciclopedia del Novecento II Supplemento (1998)

Nodi e fisica Louis H. Kauffman Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] topologiche delle corde annodate nella realtà sperimentale seguano le leggi della topologia dei nodi. 3. Invarianti di è nulla è un problema del calcolo delle variazioni e conduce direttamente alle equazioni del moto di Newton. Dunque, tramite una ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – GEOMETRIA
TAGS: TEORIA QUANTISTICA DEI CAMPI – FILOSOFIA DELLA MATEMATICA – EQUAZIONE DI SCHRÖDINGER – CALCOLO DELLE VARIAZIONI – RELAZIONE DI EQUIVALENZA
1 2 3 4 5 6 7 8 ... 14
Vocabolario
mòto²
moto2 mòto2 s. m. [lat. mōtus -us, der. di movēre «muovere»]. – 1. L’atto, il fatto, l’effetto del muoversi, cioè dello spostarsi di un corpo da una posizione a un’altra; si contrappone a quiete ed è sinon. di movimento, a cui è però preferito...
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali