principio variazionale
Daniele Cassani
Corrispondenza tra le soluzioni di un’assegnata equazione differenziale e i punti critici di un opportuno funzionale. I modelli della fisica matematica sono essenzialmente [...] l’azione S (principio di minima azione). Analogamente, la dinamica di un campo, Ψ(x,t):ℝ3+1→ℝk, è ottenuta considerando punti stazionari dell’azione
dove ℒ è la densità lagrangiana del sistema.
→ Fisica matematica; Variazioni, calcolo delle ...
Leggi Tutto
carica
càrica [Der. del lat. carricare, da carrus "carro" e quindi "ciò che si mette sul carro"] [LSF] Cosa che s'aggiunge o si somministra e, figurat., qualità o proprietà conferita; anche, l'operazione [...] [FSN] C. conservata: nella teoria dei campi, quantità che si conserva, associata a una proprietà d'invarianza della densità di lagrangiana: v. corrente nella teoria dei campi: I 790 f. ◆ [EMG] C. di polarizzazione: la c. elettrica fittizia di cui ci ...
Leggi Tutto
OTTIMIZZAZIONE. -1. Generalità e sviluppo storico
Giorgio Szegö
Con o. s'intende l'operazione di ottenere il valore ottimo di una qualche grandezza.
Per la risoluzione dei problemi di o. occorre innanzitutto [...] il quale gj(x*j) = u*j = 0 si ha:
ove si è indicata con ???2ℒ la matrice hessiana della funzione lagrangiana calcolata rispetto a x.
Notiamo che solo in casi molto semplici le condizioni riportate permettono l'identificazione in forma analitica dei ...
Leggi Tutto
L'Ottocento: matematica. Meccanica analitica
Helmut Pulte
Meccanica analitica
La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] =0 e quello finale t, e quindi in generale può essere vista come una funzione del tempo:
L=T+U è la cosiddetta 'lagrangiana', cioè la differenza tra l'energia cinetica (T) e l'energia potenziale (−U). La [18] dice quindi che l'integrale rispetto al ...
Leggi Tutto
densita
densità [Der. del lat. densitas -atis, da densus "denso"] [LSF] (a) Generic., l'esser denso, il modo più o meno compatto con cui la materia è distribuita in un corpo o in un sistema (d. materiale). [...] esso la distribuzione degli elettroni; in ogni caso, unità di misura SI è l'inverso del metro cubo (m-3). ◆ [RGR] D. lagrangiana: v. unificazione dei campi classici: VI 402 c. ◆ [LSF] D. lineica: generic., la d. (di massa, di carica, di potenza, ecc ...
Leggi Tutto
Geometria non commutativa
Irving E. Segal
Sommario: 1. Introduzione. 2. La meccanica quantistica e l'algebra degli operatori. 3. Le forme differenziali quantistiche. 4. Le C*-algebre e la loro teoria [...] di puro campo libero, quanto piuttosto nelle espressioni simboliche, locali e non lineari che sono coinvolte nella lagrangiana o nell'hamiltoniana di interazione dei campi interagenti, sia per auto-interazioni sia per interazioni tra campi differenti ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] interviene nelle equazioni variazionali associate all'azione spettrale ⟨N(λ)⟩. Si è tentati di pensare che la lagrangiana fenomenologica della fisica, che combina materia e gravità, compaia dalla soluzione di una semplicissima equazione della teoria ...
Leggi Tutto
GENOCCHI, Angelo
Livia Giacardi
Nacque a Piacenza il 5 marzo 1817 da Carlo, agiato possidente, e da Carolina Locatelli. Fin da giovanissimo il G. si distinse negli studi, in particolar modo in quelli [...] Fu questo un campo in cui il G. venne ad acquisire una posizione di cerniera nella transizione dalla gloriosa eredità lagrangiana, attraverso i metodi di Cauchy, alla moderna analisi quale andava sviluppandosi in Germania ad opera di Kronecker e di K ...
Leggi Tutto
Analisi non lineare: metodi variazionali
Antonio Ambrosetti
I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] di C∼ va fatta in modo che abbia ancora senso il funzionale T e che si possa provare, sotto opportune ipotesi sulla lagrangiana L, che T ammette minimo in C∼.
2) Forma debole della equazione. Detto z tale minimo, si mostra che esso verifica, in ...
Leggi Tutto
momento
moménto [Der. del lat. momentum "piccola causa di movimento", dalla radice di movere "muovere", e poi "piccola cosa" in genere] [LSF] Oltre ai signif. nella meccanica e in discipline a questa [...] : M. di un vettore). ◆ [MCC] M. cinetico: nella meccanica analitica, la derivata della lagrangiana di un sistema rispetto alla derivata temporale della generica coordinata lagrangiana; il nome deriva dal fatto che se per un punto s'assumono le tre ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...
velocita
velocità s. f. [dal lat. velocĭtas -atis, der. di velox -ocis «veloce»]. – 1. La rapidità di movimento di un corpo, tanto maggiore quanto maggiore è il cammino percorso in un dato tempo, valutabile quindi dal rapporto tra il cammino...