• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
48 risultati
Tutti i risultati [113]
Matematica [48]
Fisica [57]
Fisica matematica [26]
Meccanica [22]
Temi generali [19]
Meccanica quantistica [20]
Storia della fisica [18]
Analisi matematica [18]
Meccanica dei fluidi [18]
Fisica nucleare [14]

cinetico

Dizionario delle Scienze Fisiche (1996)

cinetico cinètico [agg. (pl.m. -ci) Der. del gr. kinetikós, da kinéo "muovere"] [LSF] Di grandezze o proprietà inerenti al moto e di solito aventi stretta connessione con questioni non solo geometriche [...] qh; tale uso deriva dal fatto che se per un punto si assumono le tre coordinate cartesiane come coordinate lagrangiane, i tre momenti c. s'identificano con le componenti cartesiane della quantità di moto. ◆ [MCS] Teoria c. dei gas: parte della ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – TERMODINAMICA E TERMOLOGIA – STATISTICA E CALCOLO DELLE PROBABILITA

materiale 1

Dizionario delle Scienze Fisiche (1996)

materiale 1 materiale1 [agg. Der. del lat. materialis, da materia] [LSF] [MCC] Che consta di materia o che si riferisce a proprietà della materia: corpo m., corpo ordinario, esistente nel mondo naturale [...] gravitazionali, inerziali, ecc. di questa; variabile m. (in partic., coordinata m., ecc.), lo stesso che variabile (coordinata, ecc.) lagrangiana: v. cinematica: I 698 d. ◆ [MCC] Derivata m.: lo stesso che derivata totale: v. cinematica: I 598 e ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – EPISTEMOLOGIA – METAFISICA

Hilbert, David

Dizionario delle Scienze Fisiche (1996)

Hilbert, David Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆  Azione di H.-Einstein: v. gravità [...] /(m+n)1, (1/p)+(1/q)=1, am,bn>0. ◆ Equazione, o funzione, di H.-Schmidt: v. equazioni integrali: II 479 c. q Lagrangiana di H., o di H.-Einstein: v. unificazione dei campi classici: VI 400 a. ◆ Mattone di H.: lo stesso che cubo di H. (v. sopra ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: EQUAZIONE DI BOLTZMANN – MECCANICA DEI FLUIDI – GEOMETRIA EUCLIDEA – SPAZIO VETTORIALE – SPAZIO DI BANACH
Mostra altri risultati Nascondi altri risultati su Hilbert, David (6)
Mostra Tutti

azióne

Dizionario delle Scienze Fisiche (1996)

azione azióne [Der. del lat. actio- onis, dal part. pass. actus di agere "agire"] [LSF] (a) Termine usato generic. come sinon. di forza: a. molecolari, a. a distanza, ecc.; (b) Il modo con cui determinati [...] ed energia potenziale V che abbiano fissati i valori q(t₀) e q(t₁) delle coordinate agli istanti t₀ e t₁; gli estremali dell'a. lagrangiana (o ridotta) ∫2Tdt e dell'a. jacobiana (o di Maupertuis) ∫[2(E+V)]1/2ds, dove ds è l'elemento di lunghezza dell ... Leggi Tutto
CATEGORIA: TEMI GENERALI – BIOFISICA – ELETTROLOGIA – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – RELATIVITA E GRAVITAZIONE – ALGEBRA – ANALISI MATEMATICA

derivata

Dizionario delle Scienze Fisiche (1996)

derivata derivata [s.f. dall'agg. derivato] [ANM] Il risultato dell'operazione di derivazione: nella sua forma più semplice, cioè nel caso in cui f(x) sia una funzione reale di una variabile reale x, [...] /dt=(ðf/ðt)+Σi=3i=1 (ðf/ðxi)(ðxi/ðt), dove ðf/ðt è la d. euleriana (v. sopra). ◆ [ANM] D. materiale: lo stesso che d. lagrangiana. ◆ [ANM] D. normale: data una funzione definita in un dominio D⊂R2 e una curva C definita su D, è, in ogni punto (x,y)∈D ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su derivata (4)
Mostra Tutti

Lagrange Giuseppe Luigi

Dizionario delle Scienze Fisiche (1996)

Lagrange Giuseppe Luigi Lagrange 〈lagràngë〉 (it. Lagràngia) Giuseppe Luigi (in fr. Joseph-Louis) [STF] (Torino 1736 - Parigi 1813) Prof. di matematica nella Scuola di artiglieria a Torino (1755), poi, [...] fluido bidimensionale incomprimibile; permette di costruire la forma delle linee di velocità del fluido. ◆ [MCC] Funzione di L.: lo stesso che lagrangiana. ◆ [ANM] Identità di L.: nel calcolo vettoriale, dati i vettori a, b, c, d, è (a╳b)✄(c╳d)= (a✄c ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – CALCOLO DIFFERENZIALE – ACCADEMIA DI BERLINO – INDICE DI RIFRAZIONE – ÉCOLE POLYTECHNIQUE
Mostra altri risultati Nascondi altri risultati su Lagrange Giuseppe Luigi (5)
Mostra Tutti

L'Ottocento: matematica. Il rigore in analisi

Storia della Scienza (2003)

L'Ottocento: matematica. Il rigore in analisi Umberto Botta Il rigore in analisi L'eredità di Lagrange All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] nel quale, aderendo a un sostanziale pluralismo, presentava anche il metodo dei differenziali di Leibniz ed Euler e la teoria lagrangiana. Al Traité, vera e propria summa dell'analisi matematica dell'epoca, era ispirato il manuale che egli adottava a ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

lagrangiano

Dizionario delle Scienze Fisiche (1996)

lagrangiano lagrangiano [agg. Der. del cognome di G.L. Lagrange] [MCC] Qualifica delle grandezze descrittive della dinamica di un sistema materiale continuo quando sono riferite non al generico punto [...] l.: quella di un sistema continuo fatta secondo il punto di vista l. (v. oltre). ◆ [MCC] Formulazione l.: lo stesso che lagrangiana di un sistema. ◆ [MCC] Forza l.: v. meccanica analitica: III 654 e. ◆ [ALG] Intorno l.: v. oltre: Spazio lagrangiano ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – ALGEBRA

PIOLA DAVERIO, Gabrio

Dizionario Biografico degli Italiani (2015)

PIOLA DAVERIO, Gabrio Danilo Capecchi PIOLA DAVERIO, Gabrio. – Nacque a Milano il 15 luglio 1794 da Giuseppe Maria, patrizio e giureconsulto milanese, e da Angiola Casati, in una famiglia ricca e nobile. Venne [...] sulla meccanica analitica «dell’immortale Lagrange», vincendolo con un lungo articolo sulle applicazioni della meccanica lagrangiana (Sull’applicazione de’ principj della meccanica analitica del Lagrange ai principali problemi, Milano 1825). Nel ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: CALCOLO DELLE VARIAZIONI – TEORIA DELL’INTEGRAZIONE – JOSEPH-LOUIS LAGRANGE – BONAVENTURA CAVALIERI – MECCANICA LAGRANGIANA
Mostra altri risultati Nascondi altri risultati su PIOLA DAVERIO, Gabrio (1)
Mostra Tutti

teorema di Fritz John

Enciclopedia della Scienza e della Tecnica (2008)

teorema di Fritz John Angelo Guerraggio Condizione necessaria che estende alla programmazione non lineare la classica condizione dei moltiplicatori di Lagrange (nota quando tutti i vincoli erano invece [...] in x0, allora esiste un vettore (ϑ0,λ0), diverso dal vettore nullo e a componenti non negative, tale che la funzione lagrangiana L=ϑ0 f (x)−∑λi0gi (x) annulla nel punto x0 tutte le sue derivate parziali rispetto alle variabili xj. Sono inoltre ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – MATEMATICA APPLICATA
1 2 3 4 5
Vocabolario
lagrangiano
lagrangiano agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...
velocità
velocita velocità s. f. [dal lat. velocĭtas -atis, der. di velox -ocis «veloce»]. – 1. La rapidità di movimento di un corpo, tanto maggiore quanto maggiore è il cammino percorso in un dato tempo, valutabile quindi dal rapporto tra il cammino...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali