• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
18 risultati
Tutti i risultati [113]
Analisi matematica [18]
Fisica [57]
Matematica [48]
Fisica matematica [26]
Meccanica [22]
Temi generali [19]
Meccanica quantistica [20]
Storia della fisica [18]
Meccanica dei fluidi [18]
Fisica nucleare [14]

teorema di Kuhn-Tucker

Enciclopedia della Scienza e della Tecnica (2008)

teorema di Kuhn-Tucker Angelo Guerraggio Nella funzione lagrangiana che compare nell’enunciato del teorema di Fritz John, il moltiplicatore λ0 (associato alla funzione obiettivo f) può valere 0 oppure [...] che se risulta λ0≠0 possiamo sempre supporlo unitario (eventualmente dividendo per una quantità positiva l’espressione della funzione lagrangiana). Non è comunque una differenza da poco perché, quando risulta λ0=0, scompare del tutto il ruolo svolto ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – MATEMATICA APPLICATA

punti di sella

Enciclopedia della Scienza e della Tecnica (2008)

punti di sella Angelo Guerraggio Nell’enunciato del teorema di Kuhn-Tucker, relativo al problema di determinare il massimo di una funzione f con i vincoli gi(x)≤0, compare la funzione lagrangiana L [...] ogni λ vale la doppia disuguaglianza L(x,λ0)≤L(x0,λ0)≤L(x0,λ). Un punto di sella è cioè, per la funzione lagrangiana L, un punto di massimo rispetto al vettore x e un punto di minimo rispetto al vettore λ. La definizione di punto di sella permette ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su punti di sella (1)
Mostra Tutti

simmetria

Dizionario delle Scienze Fisiche (1996)

simmetria simmetrìa [Der. del gr. symmetría, comp. di sy´n "insieme" e métron "misura"] [LSF] Proprietà d'invarianza delle funzioni descriventi un sistema fisico rispetto a date trasformazioni, di cui [...] di vuoto: v. simmetria, rottura spontanea della. Quest'ultima è la situazione che si ha per un sistema quando la lagrangiana è esattamente simmetrica, ma la s. è rotta perché il sistema sceglie un particolare stato di energia minima (il citato vuoto ... Leggi Tutto
CATEGORIA: FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – MECCANICA DEI FLUIDI – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su simmetria (4)
Mostra Tutti

equazione di Euler-Lagrange

Enciclopedia della Scienza e della Tecnica (2008)

equazione di Euler-Lagrange Daniele Cassani Per funzioni reali di variabile reale f: ℝ→ℝ una condizione necessaria per avere un massimo o un minimo in un punto x0 dove f è derivabile, è che x0 risolva [...] l’equazione Consideriamo ora un funzionale del tipo F(u)=∫βαℒ(x,u(x),u′(x))dx dove le funzioni ℒ:ℝ3→ℝ (lagrangiana) e u:[a,b]→ℝ sono regolari e inoltre, dati α,β∈ℝ, valgano agli estremi dell’intervallo [a,b] le condizioni u(a)=α, u(b)=β. Condizione ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE – PUNTO CRITICO – F =∫ΒΑℒ

teoria della dualita

Enciclopedia della Scienza e della Tecnica (2008)

teoria della dualità Angelo Guerraggio Nell’ambito dell’ottimizzazione associa a un problema di ottimo (detto primale) un altro problema (detto duale), talvolta più semplice da risolvere e che comunque [...] lineare e cerchiamo il massimo della funzione f quando le variabili decisionali xj sono soggette ai vincoli gi(x)≤0. La dualità lagrangiana, in particolare, associa a questo problema la ricerca del minimo della funzione L(x,λ)=f(x)−∑λigi(x) con gli ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

Hilbert, David

Dizionario delle Scienze Fisiche (1996)

Hilbert, David Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆  Azione di H.-Einstein: v. gravità [...] /(m+n)1, (1/p)+(1/q)=1, am,bn>0. ◆ Equazione, o funzione, di H.-Schmidt: v. equazioni integrali: II 479 c. q Lagrangiana di H., o di H.-Einstein: v. unificazione dei campi classici: VI 400 a. ◆ Mattone di H.: lo stesso che cubo di H. (v. sopra ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: EQUAZIONE DI BOLTZMANN – MECCANICA DEI FLUIDI – GEOMETRIA EUCLIDEA – SPAZIO VETTORIALE – SPAZIO DI BANACH
Mostra altri risultati Nascondi altri risultati su Hilbert, David (6)
Mostra Tutti

azióne

Dizionario delle Scienze Fisiche (1996)

azione azióne [Der. del lat. actio- onis, dal part. pass. actus di agere "agire"] [LSF] (a) Termine usato generic. come sinon. di forza: a. molecolari, a. a distanza, ecc.; (b) Il modo con cui determinati [...] ed energia potenziale V che abbiano fissati i valori q(t₀) e q(t₁) delle coordinate agli istanti t₀ e t₁; gli estremali dell'a. lagrangiana (o ridotta) ∫2Tdt e dell'a. jacobiana (o di Maupertuis) ∫[2(E+V)]1/2ds, dove ds è l'elemento di lunghezza dell ... Leggi Tutto
CATEGORIA: TEMI GENERALI – BIOFISICA – ELETTROLOGIA – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – RELATIVITA E GRAVITAZIONE – ALGEBRA – ANALISI MATEMATICA

derivata

Dizionario delle Scienze Fisiche (1996)

derivata derivata [s.f. dall'agg. derivato] [ANM] Il risultato dell'operazione di derivazione: nella sua forma più semplice, cioè nel caso in cui f(x) sia una funzione reale di una variabile reale x, [...] /dt=(ðf/ðt)+Σi=3i=1 (ðf/ðxi)(ðxi/ðt), dove ðf/ðt è la d. euleriana (v. sopra). ◆ [ANM] D. materiale: lo stesso che d. lagrangiana. ◆ [ANM] D. normale: data una funzione definita in un dominio D⊂R2 e una curva C definita su D, è, in ogni punto (x,y)∈D ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su derivata (4)
Mostra Tutti

Lagrange Giuseppe Luigi

Dizionario delle Scienze Fisiche (1996)

Lagrange Giuseppe Luigi Lagrange 〈lagràngë〉 (it. Lagràngia) Giuseppe Luigi (in fr. Joseph-Louis) [STF] (Torino 1736 - Parigi 1813) Prof. di matematica nella Scuola di artiglieria a Torino (1755), poi, [...] fluido bidimensionale incomprimibile; permette di costruire la forma delle linee di velocità del fluido. ◆ [MCC] Funzione di L.: lo stesso che lagrangiana. ◆ [ANM] Identità di L.: nel calcolo vettoriale, dati i vettori a, b, c, d, è (a╳b)✄(c╳d)= (a✄c ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – CALCOLO DIFFERENZIALE – ACCADEMIA DI BERLINO – INDICE DI RIFRAZIONE – ÉCOLE POLYTECHNIQUE
Mostra altri risultati Nascondi altri risultati su Lagrange Giuseppe Luigi (5)
Mostra Tutti

L'Ottocento: matematica. Il rigore in analisi

Storia della Scienza (2003)

L'Ottocento: matematica. Il rigore in analisi Umberto Botta Il rigore in analisi L'eredità di Lagrange All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] nel quale, aderendo a un sostanziale pluralismo, presentava anche il metodo dei differenziali di Leibniz ed Euler e la teoria lagrangiana. Al Traité, vera e propria summa dell'analisi matematica dell'epoca, era ispirato il manuale che egli adottava a ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
1 2
Vocabolario
lagrangiano
lagrangiano agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...
velocità
velocita velocità s. f. [dal lat. velocĭtas -atis, der. di velox -ocis «veloce»]. – 1. La rapidità di movimento di un corpo, tanto maggiore quanto maggiore è il cammino percorso in un dato tempo, valutabile quindi dal rapporto tra il cammino...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali