• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
18 risultati
Tutti i risultati [113]
Analisi matematica [18]
Fisica [57]
Matematica [48]
Fisica matematica [26]
Meccanica [22]
Temi generali [19]
Meccanica quantistica [20]
Storia della fisica [18]
Meccanica dei fluidi [18]
Fisica nucleare [14]

teorema di Fritz John

Enciclopedia della Scienza e della Tecnica (2008)

teorema di Fritz John Angelo Guerraggio Condizione necessaria che estende alla programmazione non lineare la classica condizione dei moltiplicatori di Lagrange (nota quando tutti i vincoli erano invece [...] in x0, allora esiste un vettore (ϑ0,λ0), diverso dal vettore nullo e a componenti non negative, tale che la funzione lagrangiana L=ϑ0 f (x)−∑λi0gi (x) annulla nel punto x0 tutte le sue derivate parziali rispetto alle variabili xj. Sono inoltre ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – MATEMATICA APPLICATA

principio variazionale

Enciclopedia della Scienza e della Tecnica (2008)

principio variazionale Daniele Cassani Corrispondenza tra le soluzioni di un’assegnata equazione differenziale e i punti critici di un opportuno funzionale. I modelli della fisica matematica sono essenzialmente [...] l’azione S (principio di minima azione). Analogamente, la dinamica di un campo, Ψ(x,t):ℝ3+1→ℝk, è ottenuta considerando punti stazionari dell’azione dove ℒ è la densità lagrangiana del sistema. → Fisica matematica; Variazioni, calcolo delle ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE – CONDIZIONI AL CONTORNO – FISICA MATEMATICA – PUNTI STAZIONARI – LAGRANGIANA

densita

Dizionario delle Scienze Fisiche (1996)

densita densità [Der. del lat. densitas -atis, da densus "denso"] [LSF] (a) Generic., l'esser denso, il modo più o meno compatto con cui la materia è distribuita in un corpo o in un sistema (d. materiale). [...] esso la distribuzione degli elettroni; in ogni caso, unità di misura SI è l'inverso del metro cubo (m-3). ◆ [RGR] D. lagrangiana: v. unificazione dei campi classici: VI 402 c. ◆ [LSF] D. lineica: generic., la d. (di massa, di carica, di potenza, ecc ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ACUSTICA – ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI PLASMI – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – FISICA TECNICA – GEOFISICA – MECCANICA – METROLOGIA – OTTICA – RELATIVITA E GRAVITAZIONE – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su densita (3)
Mostra Tutti

Analisi non lineare: metodi variazionali

Enciclopedia della Scienza e della Tecnica (2007)

Analisi non lineare: metodi variazionali Antonio Ambrosetti I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] di C∼ va fatta in modo che abbia ancora senso il funzionale T e che si possa provare, sotto opportune ipotesi sulla lagrangiana L, che T ammette minimo in C∼. 2) Forma debole della equazione. Detto z tale minimo, si mostra che esso verifica, in ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DI SCHRÖDINGER – PROIEZIONE STEREOGRAFICA

momento

Dizionario delle Scienze Fisiche (1996)

momento moménto [Der. del lat. momentum "piccola causa di movimento", dalla radice di movere "muovere", e poi "piccola cosa" in genere] [LSF] Oltre ai signif. nella meccanica e in discipline a questa [...] : M. di un vettore). ◆ [MCC] M. cinetico: nella meccanica analitica, la derivata della lagrangiana di un sistema rispetto alla derivata temporale della generica coordinata lagrangiana; il nome deriva dal fatto che se per un punto s'assumono le tre ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – GEOFISICA – MECCANICA – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su momento (2)
Mostra Tutti

Legendre Adrien-Marie

Dizionario delle Scienze Fisiche (1996)

Legendre Adrien-Marie Legendre 〈lëgŠàndr〉 Adrien-Marie [STF] (Tolosa 1752 - Parigi 1833) Prof. di matematica nell'École militaire di Parigi (1775); passò a dirigere, nel Bureau des longitudes (1787), [...] ] Trasformata di L.: la funzione risultante della trasformazione di L. (v. oltre). ◆ [ANM] Trasformazione di L.: costituisce il legame tra la formulazione lagrangiana e quella hamiltoniana della meccanica analitica: v. meccanica analitica: III 662 c. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE OMOGENEA – ÉCOLE POLYTECHNIQUE – COORDINATE SFERICHE – RADICI MULTIPLE – HAMILTONIANA
Mostra altri risultati Nascondi altri risultati su Legendre Adrien-Marie (3)
Mostra Tutti

variabile

Dizionario delle Scienze Fisiche (1996)

variabile variàbile [agg. e s.f. Der. del lat. variabilis, da variare "variare"] [ANM] Di una quantità che può assumere valori in un certo insieme numerico, o, più in generale, di un simb. che rappresenta [...] ] V. euleriana, o locale: v. cinematica: I 598 d. ◆ [INF] V. interna: lo stesso che v. di stato. ◆ [MCC] V. lagrangiana, o materiale: v. cinematica: I 598 d. ◆ [FAF] V. libera: nella logica matematica, una v. non sottoposta a un quantificatore (anche ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – MECCANICA DEI FLUIDI – STORIA DELLA FISICA – TEMI GENERALI – TERMODINAMICA E TERMOLOGIA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su variabile (2)
Mostra Tutti

Calcolo delle variazioni

Enciclopedia Italiana - VII Appendice (2006)

Il c. delle v. è quell'area della matematica definita dal seguente problema: determinare, in una famiglia assegnata di oggetti, quello che rende minima (oppure massima) una certa grandezza. Gli oggetti [...] possono venir enunciate sotto forma di principi variazionali (il più noto fra questi è quello di minima azione della meccanica lagrangiana). Le applicazioni del c. delle v. al di fuori della matematica non si limitano però alla fisica, ma interessano ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ALLE DERIVATE PARZIALI – EQUAZIONE DI EULERO-LAGRANGE – EQUAZIONE DIFFERENZIALE – TEORIA DELLA RELATIVITÀ – LENTE GRAVITAZIONALE
Mostra altri risultati Nascondi altri risultati su Calcolo delle variazioni (4)
Mostra Tutti
1 2
Vocabolario
lagrangiano
lagrangiano agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...
velocità
velocita velocità s. f. [dal lat. velocĭtas -atis, der. di velox -ocis «veloce»]. – 1. La rapidità di movimento di un corpo, tanto maggiore quanto maggiore è il cammino percorso in un dato tempo, valutabile quindi dal rapporto tra il cammino...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali