L'Eta dei Lumi: matematica. Meccanica variazionale
Helmut Pulte
Rüdiger Thiele
Meccanica variazionale
Le locuzioni 'meccanica classica' e 'meccanica newtoniana' sono, tradizionalmente, usate come sinonimi. [...] di minima azione come "la chiave universale [la clé universelle] di tutti i problemi, sia della statica che della dinamica" (Lagrange a Euler, 19 maggio 1756, in Oeuvres, XIII, p. 392). In due ampi lavori per la "Miscellanea Taurinensia" degli anni ...
Leggi Tutto
Matematico (Potsdam 1805 - Berlino 1851). Uno tra i protagonisti degli studi matematici del 19° secolo, fornì imprescindibili contributi allo studio delle funzioni ellittiche; il suo nome è ricordato per [...] (Gesammelte Werke, 1881-91).
Vita e attività
Studiò giovanissimo le opere di L. Eulero e di G. L. Lagrange. Tentò di risolvere mediante radicali l'equazione algebrica generale di 5º grado (cosa dimostrata, peraltro, impossibile in quegli stessi ...
Leggi Tutto
statica Parte della meccanica che studia l’equilibrio dei corpi sotto l’azione di determinate sollecitazioni; a seconda del sistema mediante il quale i corpi sono rappresentati si distinguono una s. del [...] (in parte motrici e in parte resistenti).
Come conseguenza di una successiva elaborazione concettuale a opera soprattutto di G. Lagrange, nella seconda metà del 18° sec. questo principio divenne un teorema, il principio potendo essere riferito al ...
Leggi Tutto
superfici minime
Luca Tomassini
Superfici la cui curvatura media H è zero in tutti i punti. La prima ricerca sulle superfici minime risale a Joseph-Louis Lagrange, che considerò il problema di determinare [...] (bidimensionale) di area minima una volta assegnato un bordo. Egli mostrò che essa deve soddisfare le equazioni di Euler-Lagrange, equivalenti appunto alla condizione H=0. Questa condizione è in realtà solo necessaria per la minimalità dell’area e ...
Leggi Tutto
L'Eta dei Lumi: matematica. La teoria dei numeri
Günther Frei
La teoria dei numeri
La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] (minimo) k=k(n) tale che ogni numero naturale m è la somma di al più k potenze n-esime non negative.
Secondo i teoremi di Lagrange (teorema 7.1) e Legendre (teorema 7.2) il minimo numero k per la potenza n=2 è k(2)=4. Waring non riuscì a verificare ...
Leggi Tutto
Playtime
Giorgio Cremonini
(Francia 1965-67, 1967, Playtime ‒ Tempo di divertimento, colore, 132m); regia: Jacques Tati; produzione: Bernard Maurice per Specta; sceneggiatura: Jacques Tati, Jacques [...] Lagrange; fotografia: Jean Badal, Andréas Winding; montaggio: Gérard Pollicand; scenografia: Eugène Roman; musica: Francis Lemarque.
Aeroporto di Parigi: gente che va, gente che viene. Una comitiva di turisti americani arriva a dare il cambio a una ...
Leggi Tutto
Matematico italiano (Bari 1944 - Venezia 2020). Professore presso la SISSA di Trieste, è uno dei massimi esperti di analisi non lineare. Ha ottenuto il premio Caccioppoli (1985), la Chaire Lagrange (1991) [...] e il premio Ferran Sunyer i Balaguer (2005). Nel 2005 l'Universidad autonoma de Madrid gli ha conferito la laurea honoris causa ...
Leggi Tutto
Fluidi, dinamica dei
RRobert D. Richtmyer
di Robert D. Richtmyer
SOMMARIO: 1. Conoscenze all'inizio del secolo. □ 2. Le equazioni fondamentali: a) equazioni euleriane e lagrangiane; b) la legge dell'entropia; [...] flusso derivante da potenziale, le equazioni dinamiche di Eulero e Lagrange per i fluidi non viscosi, i teoremi di Helmholtz e moto sono dette ‛euleriane'.
c) Le equazioni di Lagrange.
Nelle ‛equazioni lagrangiane' del moto le variabili indipendenti ...
Leggi Tutto
Analisi non lineare: metodi variazionali
Antonio Ambrosetti
I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] critici di f vincolati su M, cioè degli x∈M tali che esiste λ∈ℝ per cui ∇f(x)=λ∇g(x) (metodo dei moltiplicatori di Lagrange). Se indichiamo con ∇Mf(x) il gradiente vincolato di f su M, definito come la proiezione di ∇f(x) sul piano tangente a M in ...
Leggi Tutto
L'Ottocento: matematica. Calcolo delle variazioni
Craig Fraser
Calcolo delle variazioni
Il problema di Euler
Nel 1744 Leonhard Euler formulò il problema principale del calcolo delle variazioni nei [...] y(1),y(2))dx, nel quale la funzione integranda dipende anche dalle derivate seconde di y, è equivalente al problema di Lagrange che ottimizza l'integrale
sottoponendo la coppia di funzioni y1 e y2 al vincolo y1(1)−y2=0. Clebsch, nel lavoro del 1858 ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...
archeologia ambientale (Archeologia Ambientale) loc. s.le f. 1. Lo studio, tramite tecniche derivate dalle scienze naturali, delle caratteristiche e dell'evoluzione dell'ambiente naturale nell'antichità e della loro relazione con le attività...