Corrispondenza tra due insiemi dotati di struttura algebrica, che sia comparabile con le operazioni definite negli insiemi.
Dati due insiemi A e A′ provvisti di una struttura algebrica dello stesso tipo [...] A e sé stesso si chiama endomorfismo di A. Si chiama infine automorfismo di A un endomorfismo di A che sia al tempo stesso un isomorfismo. Teorema fondamentale sugli o. tra gruppi Se f: G → G′ è un o. tra i gruppi G e G′ e si considera il nucleo Kerf ...
Leggi Tutto
Ciascuno degli enti astratti che costituiscono una successione ordinata e che, fatti corrispondere ciascuno a ciascun oggetto preso in considerazione, servono a indicare la quantità degli oggetti costituenti [...] anche rispetto all’estrazione di radice. Si dimostra anche che R, con le operazioni e relazioni di cui sopra, contiene un sottoinsieme isomorfo a Q e che la sua cardinalità è maggiore di quella di N; R è cioè «più che numerabile». La costruzione dei ...
Leggi Tutto
rappresentazione
rappresentazióne [Der. del lat. repraesentatio -onis, dal part. pass. repraesentatus del lat. repraesentare "rappresentare", comp. di re- "di nuovo" e praesentare "presentare"] [ALG] [...] degli: III 287 c. ◆ [ALG] Problema della r.: consiste nella ricerca di un gruppo, un anello, un campo, ecc. che sia isomorfo (o anche solo omomorfo) a un assegnato sistema algebrico. ◆ [ALG] Teoria delle r.: v. gruppi, rappresentazione dei: III 120 e ...
Leggi Tutto
Campi di numeri
Massimo Bertolini
Sia α un numero algebrico, cioè un numero complesso che soddisfa un’equazione algebrica p(x)=0, dove p(x) è un polinomio
di grado n≥1 avente coefficienti nel campo [...] Per es., l’m-esimo campo ciclotomico ℚ[ζm] è un’estensione di Galois di ℚ e il suo gruppo di Galois è commutativo, isomorfo al gruppo (ℤ/mℤ)× delle unità nell’anello ℤ/mℤ delle classi di resti modulo m.
Il teorema di Kronecker-Weber afferma che ogni ...
Leggi Tutto
Finito
Antonio Machì
(XV, p. 399)
Matematica del finito
Diversi filoni della ricerca matematica che mostrano particolare vitalità si possono ricondurre all'interesse per i problemi del finito. L'analisi [...] '.
Un piano proiettivo di ordine n contiene n²1n11 punti, e, per dualità, n²1n11 rette.Il più piccolo piano proiettivo (a meno di isomorfismi) è il piano di Fano, di ordine 2, e dunque con 7 punti e 7 rette, e nel quale ogni retta contiene 3 punti e ...
Leggi Tutto
spazio
spàzio [Der. del lat. spatium, probab. da patere "essere aperto"] [FAF] Con signif. intuitivo astratto e assoluto, il luogo illimitato in cui tutti gli oggetti materiali appaiono collocati, di [...] dati. ◆ [ASF] S. interstellare: la parte dell'Universo non occupata da materia condensata in stelle e altri astri. ◆ [PRB] S. isomorfo: v. probabilità classica: IV 582 c. ◆ [ALG] S. lineare: lo stesso, a seconda dei casi, di s. proiettivo o di ...
Leggi Tutto
Biologia
C. morfogenetico Area dell’embrione, o del primordio di un germoglio, dotata della capacità di dare origine a un determinato organo; per es., i c. morfogenetici dell’arto posteriore danno origine [...] chiuso). Il c. C̅ gode della notevole proprietà che un qualunque ampliamento algebrico di C è contenuto, a meno di isomorfismi, in C̅. Per quanto riguarda i secondi si dimostra che un ampliamento trascendente qualunque di C è un ampliamento algebrico ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] da un elemento algebrico. Doveva contenere tutti i coniugati di tale elemento e il suo gruppo di Galois su K doveva essere isomorfo al gruppo delle classi di ideali di K; nessun ideale di K doveva essere divisibile per il quadrato di un ideale primo ...
Leggi Tutto
isomorfo
iṡomòrfo agg. [comp. di iso- e -morfo]. – 1. In genere, che ha forma uguale, o che è costituito da elementi di uguale forma. 2. In cristallochimica, di composto che presenta isomorfismo. Miscele i., quelle formate da sostanze cristalline...
isomorfico
iṡomòrfico agg. [der. di isomorfo] (pl. m. -ci). – 1. In botanica, nell’alternanza di generazione, detto delle due generazioni quando hanno aspetto e sviluppo eguale. 2. In matematica, relativo all’isomorfismo o a fenomeni di isomorfismo;...