GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] ' di X, e inoltre dim I (X) = κ e vi è un'unica applicazione razionale f : X → I (X). Se κ = dim X, allora I (X) è birazionalmente isomorfo a X, e in tal caso si dice che X è una varietà di tipo generale. Poiché I (X) è unico a meno di trasformazioni ...
Leggi Tutto
Modelli, Teoria dei
Silvio Bozzi
Malgrado le modeste origini che ne hanno segnato la nascita, la teoria dei modelli ha sviluppato nel corso del tempo idee e metodi che l'hanno resa uno dei settori più [...] di M è la teoria Th(MM) di tutti gli enunciati di LM veri in MM. è facile verificare che un struttura W per L sarà isomorfa a un'estensione elementare di M se e solo se esiste una sua espansione WM al linguaggio LM che sia modello di De(M). Questo in ...
Leggi Tutto
Agraria
Entità comprese in una specie (dette anche spesso razze). Per la nomenclatura delle piante coltivate il Congresso internazionale di orticoltura del 1952 stabilì alcune norme e propose il termine [...] su V e V′ rispettivamente) sono tali che le coordinate di P′ sono funzioni di classe Ci delle coordinate di P. L’applicazione si dice un isomorfismo tra V e V′ se esiste l’inversa ϕ−1 anch’essa di classe Ci (si parla in tal caso anche di omeomorfismo ...
Leggi Tutto
SIMBOLICO, CALCOLO
Fernando BERTOLINI
. 1. - Generalità. - A tutti è noto che, dovendo calcolare un'espressione come la seguente:
conviene calcolare invece la seguente:
la quale darà il logaritmo del [...] (prodotto di composizione, ingl. convolution, ted. Faltung, russo svërtka). Orbene, l'applicazione F → L(F)(F ε A) è un isomorfismo di A su B, tanto riguardo alla loro struttura di varietà lineare, quanto riguardo alla loro struttura di anello; ossia ...
Leggi Tutto
Chimica
Notazione che utilizza simboli e indici per dare informazioni relative alla composizione atomica e alla struttura di una molecola. Infatti a seconda del grado di dettaglio utilizzato è possibile [...] del patrimonio o della cosa divisibile.
Geologia
F. cristallochimica Riferita alle soluzioni solide o miscele isomorfe, indica a un tempo le sostituzioni isomorfe che in esse si sono verificate. In tali f. gli elementi vicarianti, quelli cioè che ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] curva C è l'immagine di una applicazione analitica
Siano
tali che f(pi)=xi, per i=1,…,n. Si ha una biezione di insiemi
dove un isomorfismo tra (f(p1,…,pn)) e (f(p′1,…,p′n)) è una applicazione bianalitica φ di
in sé stesso tale che f=f′o φ e ...
Leggi Tutto
algebra non commutativa
Luca Tomassini
Sia F un campo, ovvero un corpo commutativo. Un insieme A è detto F-algebra (o algebra su F) se è uno spazio vettoriale sul campo F (per es., i campi ℚ, ℝ, ℂ dei [...] lineari di uno spazio vettoriale V (su un campo F) in sé stesso; se V è di dimensione finita n, allora quest’algebra è isomorfa all’algebra delle matrici quadrate n×n a n righe e n colonne. Più in generale, non è difficile dimostrare che se A è una ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] T in T (H), una forma lineare continua ωT su L (H) data da S → Sp (ST). L'applicazione T in T (H) → ωT è un isomorfismo isometrico di L (H) sullo spazio duale T (H)′ di T (H). L'identificazione L (H) = T (H)′ porta con sé la topologia w* data dalla ...
Leggi Tutto
Logica matematica
Abraham Robinson
*La voce enciclopedica Logica matematica è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un’introduzione di Gabriele Lolli e un saggio di Beppo [...] tutte anche in M′, diciamo che M′ è elementarmente equivalente a M (per il vocabolario dato). Se due strutture sono isomorfe, e cioè se è possibile porle in corrispondenza biunivoca in modo che le relazioni e le funzioni siano conservate, esse sono ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] divisori è molto meno rilevante nel caso delle superfici, alle quali non si estende l'isomorfismo tra curve e campi di funzioni razionali. Superfici non isomorfe possono avere lo stesso campo di funzioni. Per esempio, il piano proiettivo ℂℙ2 e una ...
Leggi Tutto
isomorfico
iṡomòrfico agg. [der. di isomorfo] (pl. m. -ci). – 1. In botanica, nell’alternanza di generazione, detto delle due generazioni quando hanno aspetto e sviluppo eguale. 2. In matematica, relativo all’isomorfismo o a fenomeni di isomorfismo;...
isomorfismo
iṡomorfismo s. m. [comp. di iso- e -morfismo]. – 1. In cristallochimica, il fenomeno per cui due o più sostanze che hanno analoga formula chimica (e simili dimensioni relative di anioni e cationi) si presentano in cristalli aventi...