invertibileinvertìbile [agg. Der. di invertire: → inverso] [LSF] Che può essere invertito, che può subire un'operazione d'inversione: applicazione i., emulsione fotografica i., teorema i., per i quali [...] → inversione; talora è sinon. di reversibile: macchina elettrica i., che può funzionare anche da generatore, applicando a esso un'adatta tensione. ◆ [OTT] Emulsione o pellicola, i.: atta a dare direttamente ...
Leggi Tutto
Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] intero m>0, si abbia (U−λI)m∙x=0. Allora E è la somma diretta dei sottospazi N(λ,U). Infatti, per ogni μ∈S, U−μI è invertibile e d'altra parte, per λ∈S, la restrizione di U−λI alla somma diretta F(λ,U) di tutti i sottospazi N(μ,U) per μ≠λ è ...
Leggi Tutto
modulo
Luca Tomassini
Gruppo abeliano (in cui l’operazione di moltiplicazione è commutativa) unito a un anello di operatori. Un modulo è la generalizzazione di uno spazio vettoriale (lineare) su un [...] che un campo è un anello in cui anche la moltiplicazione (come l’addizione) è commutativa e ogni elemento tranne lo zero è invertibile rispetto a essa. Un gruppo abeliano M è detto A-modulo sinistro se esiste un’applicazione (a,m)→am, con a∈A e ...
Leggi Tutto
inverso
invèrso [agg. e s.m. Dal lat. inversus, part. pass. di invertere "invertire"] [LSF] Di ente o fenomeno che è, completamente oppure per qualche verso, il contrario, il reciproco, l'opposto di [...] che l'applicazione f-1 o f è l'applicazione identica di A in sé stesso. ◆ [ANM] Funzione i.: → invertibile: Funzione invertibile. ◆ [FAF] Legge delle proposizioni i.: → proposizione. ◆ [ALG] Numero i., o intero (s.m.) di un numero dato: il reciproco ...
Leggi Tutto
singolare
singolare [agg. Der. del lat. singularis "proprio di uno solo"] [LSF] Di ente che si comporta in modo diverso dal normale, che presenta eccezioni rispetto a qualche proprietà, in contrapp. [...] , punto in cui la funzione non è olomorfa; (c) di una trasformazione, punto in cui la trasformazione non è invertibile; (d) di un sistema di equazioni differenziali lineari, punto in cui la matrice rappresentativa del sistema ha una singolarità ...
Leggi Tutto
Ljapunov Aleksandr Michajlovic
Ljapunov 〈liapunòf〉 Aleksandr Michajlovič [STF] (Jaroslav 1857 - Odessa 1918) Prof. di matematica nell'univ. di Charkov (1893); socio straniero dei Lincei (1908). ◆ [MCC] [...] e contrazione dei segmenti infinitesimi sotto l'azione delle iterate di una trasformazione S, regolare (differenziabile a tratti e localmente invertibile) di Rn in sé, definita nell'intorno di un insieme A chiuso limitato e S-invariante (ossia SA⊂A ...
Leggi Tutto
trasformata di Fourier
Luca Tomassini
Una trasformazione integrale che mappa una funzione a valori complessi f(x):ℝn→ℂ nella sua corrispondente trasformata di Fourier (detta anche funzione spettrale [...] inoltre ∣∣f∼(p)∣∣2=∣∣f(x)∣∣2: la trasformata di Fourier definisce un operatore lineare isometrico (e dunque sempre invertibile) dello spazio di Hilbert L2(ℝn,ℂ) delle funzioni a quadrato sommabile in sé. Dalla definizione è immediato verificare che ...
Leggi Tutto
matrice jacobiana
Luca Tomassini
Generalizzazione al caso di funzioni di più variabili a valori vettoriali del concetto di derivata di una funzione scalare g:ℝ→ℝ. Più precisamente, si chiama matrice [...] Uno dei più importanti teoremi dell’analisi matematica classica, il teorema della funzione inversa, afferma che una funzione f:ℝν→ℝν è invertibile in un intorno opportuno di un punto x0∈ℝν se detJ calcolato in x0 è diverso da zero. Infine, il valore ...
Leggi Tutto
teoria dei semigruppi
Luca Tomassini
Un semigruppo è un insieme con una operazione binaria * (comunemente detta moltiplicazione) che soddisfi la proprietà associativa: a*(b*c)=(a*b)*c. Un semigruppo [...] soluzioni di equazioni differenziali (anche alle derivate parziali), nella teoria dei processi stocastici (l’evoluzione temporale qui non è invertibile) e anche nella fisica matematica.
→ Automi e linguaggi formali; Equazioni funzionali; Stocastica ...
Leggi Tutto
invertibile
invertìbile agg. [der. di invertire]. – Che può essere invertito, oppure che consente l’inversione. In matematica, teorema i., teorema di cui è vero anche il teorema inverso; funzione i., ogni funzione y = f(x) la cui variabile...