• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
91 risultati
Tutti i risultati [574]
Matematica [91]
Fisica [85]
Medicina [54]
Temi generali [56]
Economia [48]
Biologia [50]
Diritto [43]
Ingegneria [35]
Analisi matematica [31]
Geografia [29]

misura di Wiener

Enciclopedia della Scienza e della Tecnica (2008)

misura di Wiener Luca Tomassini Una misura di probabilità sullo spazio C([0,1],ℝ) delle funzioni continue a valori reali sull’intervallo chiuso [0,1] definita come segue. Siano 0⟨t1⟨...⟨tν≤1 punti arbitrari [...] o intersezioni finite di intervalli chiusi). Indichiamo infine con C(t1,...,tν;A1,...,Aν) l’insieme di tutte le funzioni di Wiener Misura e integrale di Wiener hanno costituito il primo esempio di estensione della teoria dell’integrazione a spazi di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: TEORIA DELL’INTEGRAZIONE – DENSITÀ DI PROBABILITÀ – MISURA DI LEBESGUE – FUNZIONALE LINEARE – FUNZIONI CONTINUE

scaloide

Enciclopedia on line

scaloide Successione di parallelogrammi o di parallelepipedi aventi una base sopra una determinata retta o un determinato piano, e tali che due successivi abbiano un lato o una faccia sovrapposti. Il termine [...] (a, b) e per altezza rispettivamente i segmenti immagine dell’estremo inferiore o superiore di f(x) nell’intervallo Δxi. Se la f(x) è integrabile in (a, b), l’area dello s. rappresenta un valore approssimato per difetto o rispettivamente per ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: PARALLELOGRAMMI

OPERATORI; OPERAZIONALE, CALCOLO

Enciclopedia Italiana - IV Appendice (1979)

OPERATORI; OPERAZIONALE, CALCOLO (od operatorio, calcolo) Tullio Viola Riteniamo opportuno aggiungere alle considerazioni svolte nelle voci: operatori (App. III, 11, p. 317) e simbolico, calcolo (App. [...] . Accenniamo alla definizione di derivazione d'un funzionale data da Volterra, e a quella d'integrazione concepita come operazione inversa della precedente. Consideriamo la classe C delle funzioni f (x) reali e continue in uno stesso intervallo [a, b ... Leggi Tutto

FUNZIONE

Enciclopedia Italiana - III Appendice (1961)

FUNZIONE (XVI, p. 185) Luigi AMERIO Funzioni di più variabili complesse. - La teoria delle f. di più variabili complesse ha ricevuto negli ultimi decennî sviluppi notevolissimi, che ne hanno permesso [...] . Le f. q. p. secondo Stepanoff (non più necessariamente continue, ma misurabili e di potenza p-esima integrabile in ogni intervallo limitato) sono legate alla definizione di distanza: La definizione [1] si muta nell'altra: ove l'insieme dei quasi ... Leggi Tutto

La seconda rivoluzione scientifica: matematica e logica. La scuola matematica di Mosca

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La scuola matematica di Mosca Sergej Sergeevic Demidov La scuola matematica di Mosca La matematica a San Pietroburgo e a Mosca Nella seconda [...] sui metodi di approssimazione (formule per l'integrazione numerica e polinomi per l'approssimazione di funzioni che di funzioni misurabili convergente quasi ovunque su un intervallo risulta uniformemente convergente se si trascura un sottoinsieme di ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

prodotto

Dizionario delle Scienze Fisiche (1996)

prodotto prodótto [Part. pass. sostantivato di produrre, der. del lat. producere "portare avanti", comp. di pro- "davanti" e ducere "condurre"] [LSF] Generic., il risultato di qualcosa, spec. di un'attività, [...] elementi dei due insiemi): v. misura e integrazione: IV 5 b. ◆ [ALG] P. cartesiano di spazi: v. topologia algebrica: VI 259 f. ◆ [ALG] P. di convoluzione: lo stesso che convoluzione. ◆ [ALG] P. di due trasformazioni: la trasformazione che s'ottiene ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA

teoria di Lebesgue

Enciclopedia della Scienza e della Tecnica (2008)

teoria di Lebesgue Luca Tomassini Complesso di idee e metodi che, sviluppatisi a partire dai lavori di Henri Lebesgue all’inizio del secolo scorso, vanno oggi sotto il nome di teoria della misura e [...] a valori reali) misurabile, sostanzialmente una funzione f tale che la controimmaggine f−1([a,b]) di un intervallo [a,b] sia un insieme misurabile (se [a,b] non è contenuto nell’immagine di f si pone f−1([a,b])=∅ e l’insieme vuoto ∅ è misurabile) Un ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

Jacobi Karl Gustav Jacob

Dizionario delle Scienze Fisiche (1996)

Jacobi Karl Gustav Jacob Jacobi 〈iakóbi〉 Karl Gustav Jacob [STF] (Potsdam 1805 - Berlino 1851) Prof. di matematica nell'univ. di Königsberg (1827). ◆ [MCC] Condizione di J.: v. moto, costanti del: IV [...] da u, la parentesi di J. coincide con la parentesi di Poisson. Le parentesi di J. sono utili nella risoluzione di sistemi di equazioni differenziali ordinarie. ◆ [ANM] Polinomi di J.: sono un sistema di polinomi ortogonali sull'intervallo [-1,1]: Pn ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – FISICA TECNICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – ALGEBRA – ANALISI MATEMATICA

variazione

Dizionario delle Scienze Fisiche (1996)

variazione variazióne [Der. del lat. variatio -onis, dal part. pass. variatus di variare "variare", che è da varius "vario"] [MCC] V. asincrona: v. variazionali, principi: VI 457 c. ◆ [ASF] V. della [...] (a) di una funzione: v. misura e integrazione: IV 4 b; (b) di una misura: v. misura e integrazione: IV di v.: v. fluttuazioni termodinamiche: II 666 a. ◆ [ANM] Funzione a v. limitata: funzione reale f della variabile reale x, definita sull'intervallo ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA

positivo

Dizionario delle Scienze Fisiche (1996)

positivo positivo [Der. del lat. positivus "che viene posto", der. del part. pass. positus di ponere "porre"] [LSF] (a) Che è posto come dato sul piano della realtà, che deriva dall'esperienza: per es., [...] estremità nord dei magneti. ◆ [ALG] Misura p.: una funzione a valori nell'intervallo [0, +∞]: v. misura e integrazione: IV 2 f. ◆ [ALG] Numero p.: ogni numero reale maggiore di zero, contraddistinto, ove occorra, con il segno +. ◆ [EMG] Polo p.: il ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – OTTICA – TEMI GENERALI – ALGEBRA
1 2 3 4 5 6 7 8 9 10
Vocabolario
tèmpo
tempo tèmpo s. m. [lat. tĕmpus -pŏris, voce d’incerta origine, che aveva solo il sign. cronologico, mentre quello atmosferico (cfr. al n. 8) era significato da tempestas -atis]. – 1. L’intuizione e la rappresentazione della modalità secondo...
integrale
integrale agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali