NUMERI, Teoria dei
Enrico Bombieri
Gli sviluppi recenti della t. dei n. (v. aritmetica: Aritmetica inferiore o teoria dei numeri, IV, p. 370) hanno condotto alla soluzione di problemi fondamentali e [...] anni Baker è riuscito, con l'introduzione di misure di approssimazione dei logaritmi di numeri algebrici, a determinare algoritmi effettivi per trovare tutte le soluzioni intere di un'equazione f(x,y) = 0 di genere1, e per vaste classi di equazioni ...
Leggi Tutto
Numeri, teoria dei
LLarry Joel Goldstein
di Larry Joel Goldstein
SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] F è un anello. In altre parole, la somma, la differenza e il prodotto di interialgebrici di F appartengono ancora a F. Questo anello è chiamato l'‛anello degli interialgebrici' di F ed è indicato con ℴF. L'aritmetica dell'anello ℴF è il principale ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] , il numero delle classi di ideali di Dedekind è finito.
È rispetto agli ideali, non rispetto agli interialgebrici, che Dedekind sviluppò la propria aritmetica. Fornendo le definizioni di ideale primo e di moltiplicazione fra ideali, dimostrò ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] rappresentare come prodotto di due polinomi di grado positivo a coefficienti razionali. Se a=1 allora α si definisce interoalgebrico. I numeri non algebrici si dicono trascendenti. Già nel 1844 Joseph Liouville aveva dimostrato che se α è un numero ...
Leggi Tutto
numeri algebrici
Luca Tomassini
Numeri complessi (in particolare reali) che siano radici di un polinomio f(x)=anxn+...+a1x+a0 con coefficienti razionali non tutti nulli. Se α è un numero algebrico, [...] radice di un polinomio con coefficienti algebrici è algebrica. Un numero algebrico è detto interoalgebrico se tutti i coefficienti del suo polinomio minimo sono interi. Per es., il numero 1+√√_2 è interoalgebrico in quanto radice del polinomio x2 ...
Leggi Tutto
interointèro [agg. e s.m. Der. del lat. integer -egri] [LSF] Che ha tutte le sue parti e, come s.m., l'insieme delle parti, il tutto. ◆ [ALG] I. algebrico: numero che sia radice di un'equazione irriducibile [...] i. con il coefficiente di grado maggiore pari a n, che è detto grado dell'i. algebrica; gli i. algebrici hanno proprietà simili a quelle degli ordinari numeri interi. ◆ [ANM] Funzione i.: v. funzioni di variabile complessa: II 778 f. ◆ [ANM] Funzione ...
Leggi Tutto
In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali.
Cenni storiciL’antichità
- L’origine della g. è legata a concreti problemi di misurazione del terreno (nacque [...] al calcolo differenziale assoluto e al calcolo tensoriale; la g. algebrica (iniziata, per le curve, da Riemann e fiorita poi sfuggì all’analisi dei fondamenti della g. e della intera matematica; venne così messa in luce la possibilità di presentare ...
Leggi Tutto
Agraria
Entità comprese in una specie (dette anche spesso razze). Per la nomenclatura delle piante coltivate il Congresso internazionale di orticoltura del 1952 stabilì alcune norme e propose il termine [...] la v. è analitica e si indica con Cω e così via. L’intero n è la dimensione della v., e in definitiva è il numero di parametri che sono ideali primi di K. In quest’ottica moderna una v. algebrica su K è uno schema su Spec K, cioè uno spazio topologico ...
Leggi Tutto
Ciascuno degli enti astratti che costituiscono una successione ordinata e che, fatti corrispondere ciascuno a ciascun oggetto preso in considerazione, servono a indicare la quantità degli oggetti costituenti [...] ). Dato un corpo F=Q(α), l’insieme di tutti gli interialgebrici di F costituisce un anello indicato con OF. Per es., l’anello degli interi del corpo quadratico Q(√‾‾‾‾−1) è quello degli interi di Gauss. In OF si possono avere più unità e la ...
Leggi Tutto
In arte e architettura, persona od oggetto che l’artista ritrae o riproduce, oppure esemplare preparatorio dell’opera finale. Nel linguaggio scientifico, costruzione schematica, puramente ipotetica o realizzata [...] al tempo t, un tipico m. che permette di discutere l’interazione tra le due specie in modo esauriente è dato dal sistema: adempie alla funzione di un’interpretazione alternativa.
Nel campo algebrico si può considerare invece m. di una struttura ...
Leggi Tutto
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
irregolarita
irregolarità s. f. [der. di irregolare; cfr. lat. tardo irregularĭtas -atis «indisciplina nella condotta»]. – 1. a. Condizione di ciò che è irregolare, nei diversi sign. dell’aggettivo: i. di una procedura, di un possesso; invalidare...