In matematica, si chiamano interi positivi (o naturali) i numeri della successione infinita 1, 2, 3, 4, ... ciascuno dei quali si ottiene dal precedente aggiungendo a esso l’unità. Gli interi negativi [...] sono numeri della successione −1, −2, −3, ... Gli interi positivi e negativi, insieme con lo zero, si chiamano interi relativi. (➔ anche numero) ...
Leggi Tutto
Numeri, teoria dei
Larry Joel Goldstein
La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri
…, −4, −3, −2, [...] d≠−1,−3, {±1,±i} se d=−1 e {±1,(±1±√−3)/2} se d=−3. Le unità di un corpo quadratico reale sono tutte della forma ±ε0n, dove n è intero e ε0 è la cosiddetta unità fondamentale. Se d≡2 o 3(mod 4), allora ε=x+y√d è un'unità di OF se e solo se x2−dy2=±1 ...
Leggi Tutto
(MCD) In matematica, dati 2 o più numeri interi, il più grande tra i divisori a essi comuni. Se due o più numeri hanno per MCD l’unità, si dicono primi tra loro. Naturalmente più numeri primi sono anche [...] primi tra loro, ma non viceversa. Il MCD può trovarsi con il metodo delle divisioni successive, oppure mediante scomposizione in fattori primi. È infatti il prodotto dei fattori primi comuni a tutti i ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] an−bn)/(a−b) e vn=an+bn, nel caso in cui a e b siano le radici di un polinomio di secondo grado a coefficienti interi primi tra loro. Gli un, per n dispari, dividono l'espressione x2−aby2; Lucas ne dedusse la legge secondo la quale certi numeri primi ...
Leggi Tutto
Nella geometria elementare, sinonimo di uguaglianza (➔) diretta, cioè di sovrapponibilità.
Nella teoria dei numeri, relazione di due numeri interi relativi a, b tali che la differenza a−b è divisibile [...] ., valgono le proprietà riflessiva, simmetrica e transitiva dell’uguaglianza. Ciò vuol dire che, fissato un modulo m, tutti gli interi possono essere divisi in classi, tali che i numeri di due classi diverse siano sempre incongrui tra di loro, mentre ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] costante ϑ=ϑ(n) tale che per un numero algebrico α di ordine n la disuguaglianza ∣α−p/q∣>q−ϑ−ε con p,q>0 interi ammetta un numero finito di soluzioni se ε>0 e un numero infinito di soluzioni se ε⟨0. Nel 1909 Axel Thue dimostrò che ϑ≤(n/2)+1 ...
Leggi Tutto
In matematica, somma di monomi (in senso proprio, solo con riferimento a monomi interi), detti termini del p.: binomio, trinomio, quadrinomio ecc., è un polinomio rispettivamente di 2, 3, 4 ecc. termini; [...] 15, il p. x2−1 ha quattro zeri, e cioè 1, 4, 11, 14 (in effetti, 12−1 = 0; 42−1, 112−1 e 142−1 sono interi divisibili per 15 e perciò sono nulli in Z15); viceversa, nell’anello Z4 il polinomio x3+2x+2 non ha nessuno zero e infatti per i valori 0, 1 ...
Leggi Tutto
L'Eta dei Lumi: matematica. La teoria dei numeri
Günther Frei
La teoria dei numeri
La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] se divisi per p, ovvero ap−a è divisibile per p. In simboli:
[1] ap≡a (mod p).
In altre parole: per qualsiasi primo p e qualsiasi intero a non divisibile per p, ap−1 dà 1 come resto della divisione per p; in simboli:
[2] ap-1≡1 (mod p).
Il teorema fu ...
Leggi Tutto
Ciascuno degli enti astratti che costituiscono una successione ordinata e che, fatti corrispondere ciascuno a ciascun oggetto preso in considerazione, servono a indicare la quantità degli oggetti costituenti [...] = 2, 3, 5, 7, 13; a essi corrispondono, rispettivamente, i n. perfetti 6, 28, 496, 8128, 33.550.336.
N. primi. Un n. primo è un intero maggiore di 1 che non ha altri divisori positivi che 1 e sé stesso. I più piccoli n. primi sono 2, 3, 5, 7, 11, 13 ...
Leggi Tutto
forme modulari
Massimo Bertolini
Si indichi con SL2(ℤ) il gruppo delle matrici 2×2 a coeffcienti nell’anello ℤ degli interi relativi aventi determinante 1, e con Γ0(N) il sottogruppo contenente le matrici [...] peso k rispetto a Γ, aventi primo coefficiente di Fourier a0 uguale a zero. Vi è una famiglia di operatori T{[, per n≥1 intero, detti operatori di Hecke, che agiscono come endomorfismi su S〈(Γ). Per es., se p è primo e non divide N, allora
[5]
dove ...
Leggi Tutto
inter-
ìnter- [dal lat. inter «tra», inter-]. – Prefisso di parole composte, derivate dal latino (specialmente verbi) o formate modernamente (soprattutto sostantivi e aggettivi), nelle quali ha in genere i significati della prep. tra, indicando...
interarmi
(o interarme) agg. [comp. di inter- e arma]. – Che interessa o riguarda due o più armi dell’esercito: disposizioni, circolari interarmi. Cfr. interforze e pluriarma.