• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
atlante
Le parole valgono
lingua italiana
105 risultati
Tutti i risultati [1081]
Matematica [105]
Biografie [288]
Letteratura [120]
Fisica [111]
Diritto [97]
Storia [90]
Temi generali [65]
Economia [64]
Religioni [61]
Arti visive [59]

Irreversibilita

Enciclopedia del Novecento II Supplemento (1998)

Irreversibilità JJoel L. Lebowitz Sommario: 1. Introduzione: a) considerazioni qualitative; b) considerazioni quantitative; c) teoria microscopica. 2. Il problema dell'irreversibilità macroscopica. [...] da: SB (M) = k log ∣ΓM∣, (1) dove k è la costante di Boltzmann e ∣ΓM∣ è il volume dello spazio delle fasi associato al macrostato M, cioè ∣ΓM∣ è l'integrale dell'elemento di volume di Liouville invariante nel tempo esteso a ΓM (SB è definita a meno ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: DISTRIBUZIONI DI PROBABILITÀ – EQUAZIONE DI NAVIER-STOKES – DISTRIBUZIONE MAXWELLIANA – EQUAZIONE DI DIFFUSIONE – LEGGE DEI GRANDI NUMERI
Mostra altri risultati Nascondi altri risultati su Irreversibilita (4)
Mostra Tutti

PEANO, Giuseppe

Dizionario Biografico degli Italiani (2015)

PEANO, Giuseppe Clara Silvia Roero PEANO, Giuseppe. – Nacque a Spinetta, nei pressi di Cuneo, il 27 agosto 1858, secondogenito di Bartolomeo e di Rosa Cavallo, proprietari terrieri. Frequentò le scuole [...] . Hermann Minkowski nell’articolo sui concetti di lunghezza, area e volume (1901) vi prese lo spunto per di Peano questo tipo di studi proseguì con la generalizzazione a sistemi di infinite equazioni differenziali ed equazioni integrali, nella tesi di ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: JOHANN PETER GUSTAV LEJEUNE DIRICHLET – CENTRO DI DOCUMENTAZIONE TERRITORIALE – ACCADEMIA DELLE SCIENZE DI TORINO – FUNZIONE DI PIÙ VARIABILI – GEOMETRIA DIFFERENZIALE
Mostra altri risultati Nascondi altri risultati su PEANO, Giuseppe (6)
Mostra Tutti

La civiltà islamica: antiche e nuove tradizioni in matematica. Gli archimedei e i problemi infinitesimali

Storia della Scienza (2002)

La civilta islamica: antiche e nuove tradizioni in matematica. Gli archimedei e i problemi infinitesimali Roshdi Rashed Gli archimedei e i problemi infinitesimali La storia della geometria infinitesimale, [...] equivale pertanto a quello di un integrale di Cauchy-Riemann semplice. Questa equivalenza matematica, tuttavia, non deve nascondere il problema seguente: perché Ibn al-Hayṯam, una volta determinati i volumi mediante questo integrale, non ha mai ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Numeri, teoria dei

Enciclopedia del Novecento (1979)

Numeri, teoria dei LLarry Joel Goldstein di Larry Joel Goldstein SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] la linea di integrazione nella (14) a sinistra, l'integrale rimane invariato, di un angolo assegnato α; 2) costruzione di un cubo di volume doppio rispetto a quello di un cubo assegnato; 3) costruzione di un quadrato di area uguale a quella di ... Leggi Tutto
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – LEGGE DI RECIPROCITÀ QUADRATICA – DOMINIO A FATTORIZZAZIONE UNICA – COSTRUIBILE CON RIGA E COMPASSO – TEOREMA DI KRONECKER-WEBER

L'Ottocento: matematica. Analisi complessa

Storia della Scienza (2003)

L'Ottocento: matematica. Analisi complessa Jeremy Gray Analisi complessa Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] di ordine finito e la applicò al calcolo degli integrali reali (impropri). Successivamente, nel 1825, cominciò a pubblicare gli Exercices de mathématiques, il modo migliore per diffondere i risultati delle sue ricerche. A partire dal primo volume ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La probabilità

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La probabilita Eugenio Regazzini La probabilità Evoluzione della nozione di probabilità La grande difficoltà in cui si dibattevano i cultori [...] e t in ℱ con s⟨t, allora resta provata la validità dell'equazione integrale (di Einstein-Smoluchowski, nel caso particolare del moto browniano) [20] ps,t(B∣x volume di un trattato (Feller 1950-71) che tanta parte avrebbe avuto nella formazione di ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA

L'Ottocento: matematica. Il rigore in analisi

Storia della Scienza (2003)

L'Ottocento: matematica. Il rigore in analisi Umberto Botta Il rigore in analisi L'eredità di Lagrange All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] di Vincenzo Brunacci (1768-1818), professore di calcolo sublime presso l'Università di Pavia. Alle lezioni di Brunacci, raccolte nei quattro volumi del Corso di ottenuta da Euler come integrale di un'equazione differenziale lineare del ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: astronomia. Il problema dei tre corpi e la stabilità del Sistema solare

Storia della Scienza (2003)

L'Ottocento: astronomia. Il problema dei tre corpi e la stabilita del Sistema solare June Barrow-Green Il problema dei tre corpi e la stabilità del Sistema solare Questo capitolo illustra, a grandi [...] Lindstedt e Bohlin e alle loro applicazioni al problema dei tre corpi. Nell'ultimo volume, dominato dalle idee geometriche di Poincaré, venivano infine discussi gli integrali invarianti e la stabilità e qui l'autore tornava, per la prima volta, sulle ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. Lo sviluppo della teoria della probabilità e della statistica

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Lo sviluppo della teoria della probabilita e della statistica Oscar Sheynin Lo sviluppo della teoria della probabilità e della statistica I primi sviluppi del calcolo delle [...] densità φ(αx)=0, x=∞; φ(αx)=q≠0, x≠∞, α→0, con una scelta che anticipa la funzione δ di Dirac. In ogni caso una delle sue conclusioni era basata sulla considerazione dell'integrale di [36] φ[α(x-x1)]φ[α(x-x2)]…φ[α(x-xn)] (dove le xi, i=1,…, n, sono ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA – STORIA DELLA MATEMATICA

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] degli invarianti che l'integrale nella [62] deve essere proporzionale all'azione di Hilbert-Einstein; il calcolo diretto è stato eseguito da D. Kastler e dà: dove, come sopra, dv=√g d4x è l'elemento di volume, ds=D−1 l'elemento di lunghezza, cioè l ... Leggi Tutto
CATEGORIA: GEOMETRIA
1 2 3 4 5 6 7 8 ... 11
Vocabolario
miṡura
miṡura s. f. [lat. mensūra, der. di mensus part. pass. di metiri «misurare»]. – 1. a. Il valore numerico attribuito a una grandezza, ottenuto ed espresso come rapporto tra la grandezza data e un’altra della stessa specie assunta come unità (unità...
lavóro
lavoro lavóro s. m. [der. di lavorare]. – 1. a. In senso lato, qualsiasi esplicazione di energia (umana, animale, meccanica) volta a un fine determinato: il l. dell’uomo, dei buoi, di un cavallo, di una macchina, del computer; l. muscolare,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali