• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
atlante
Le parole valgono
lingua italiana
105 risultati
Tutti i risultati [1081]
Matematica [105]
Biografie [288]
Letteratura [120]
Fisica [111]
Diritto [97]
Storia [90]
Temi generali [65]
Economia [64]
Religioni [61]
Arti visive [59]

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] problemi che sorgono in modo analogo quando si esamini la relazione tra integrali di superficie e integrali di volume. Nel caso del magnetismo terrestre la distribuzione superficiale equivalente ha una grande importanza teorica; infatti soltanto ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Geometria non commutativa

Enciclopedia della Scienza e della Tecnica (2007)

Geometria non commutativa Alain Connes Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo allora la teoria generale della relatività dà chiaramente ragione a Carl [...] che l'integrale nella [62] deve essere proporzionale all'azione di Hilbert-Einstein; il calcolo diretto è stato eseguito da Daniel Kastler e dà [63] formula dove, come sopra, dv=√_g d4x è l'elemento di volume, ds=D−1 l'elemento di lunghezza, cioè ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – APPROSSIMAZIONE SEMICLASSICA – ELETTRODINAMICA QUANTISTICA – GRUPPO DI RINORMALIZZAZIONE
Mostra altri risultati Nascondi altri risultati su Geometria non commutativa (13)
Mostra Tutti

La grande scienza. Combinatoria

Storia della Scienza (2003)

La grande scienza. Combinatoria Peter J. Cameron Combinatoria Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] A seguito dello sviluppo del calcolo differenziale e integrale di Newton e Leibniz, sembrò che il mondo si the international congress of mathematicians, Berlin 1998, "Documenta Mathematica" Extra Volume ICM 1998, 3 v., I, pp. 476-486 (disponibile in ... Leggi Tutto
CATEGORIA: ALGEBRA

Stocastica

Enciclopedia del Novecento (1984)

MMark Kac di Mark Kac SOMMARIO: 1. Preliminari. □ 2. Alcune sottigliezze matematiche. □ 3. Alcune classi generali di processi stocastici con esempi: a) processi di Markov con spazio degli stati finito [...] segue che La difficoltà consiste ora nel definire l'integrale di Stieltjes Bisogna procedere con cautela nell'effettuare l'integrazione per nv(t) il numero di particelle che al tempo t si trovano in una porzione di volume v del recipiente. Per ... Leggi Tutto
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – COEFFICIENTE DI CORRELAZIONE – GENETICA DELLE POPOLAZIONI – OSSERVAZIONE SPERIMENTALE – EQUAZIONE DI SCHRÖDINGER
Mostra altri risultati Nascondi altri risultati su Stocastica (2)
Mostra Tutti

L'Età dei Lumi: matematica. Le equazioni differenziali

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Le equazioni differenziali Silvia Mazzone Clara Silvia Roero Le equazioni differenziali E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] un gran numero di risultati interessanti, in seguito raccolti in modo sistematico e generale nel terzo volume delle Institutiones calculi integralis aveva asserito che un integrale di un'equazione alle derivate parziali di ordine n è completo quando ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] studio degli integrali multipli e delle forme differenziali, schierandosi contro una presentazione eccessivamente dettagliata di tali argomenti. Gruppi e algebre di Lie Il libro su Groupes et algèbres de Lie (LIE) è costituito da quattro volumi. Il ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] che si può ridurre a un punto per contrazioni continue di C, la formula di Gauss-Bonnet esprime ‛l'integrale di curvatura' ∫RKω1⋀ω2 mediante l'integrale di linea ∫Ckg, della curvatura geodetica kg di C definita nella (39): ∫Ckg+∫RKω1⋀ω2=2π. (53) Se ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] a Parigi nel 1902. L'integrale di Lebesgue, oggetto di grande attenzione, non era tuttavia di tali spazi per p>1 è di particolare interesse, in quanto per tali valori di p questi spazi sono 'riflessivi'. In un importante articolo del volume ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Stocastica

Enciclopedia della Scienza e della Tecnica (2007)

Stocastica Mark Kac Storicamente i processi stocastici furono introdotti nel mondo della scienza (e più tardi della matematica) sotto una forma assai diversa da quella derivante dalla definizione formale [...] che [63] formula. La difficoltà consiste ora nel definire l'integrale di Stieltjes [64] ∫t0F(τ)db(τ). Bisogna procedere con browniano. Sia nv(t) il numero di particelle che al tempo t si trovano in una porzione di volume v del recipiente. Per V→∞ e ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: COEFFICIENTE DI CORRELAZIONE – OSSERVAZIONE SPERIMENTALE – PROBABILITÀ CONDIZIONATA – FUNZIONE NON DECRESCENTE – EQUAZIONE DI DIFFUSIONE

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura Maurice Sion La teoria della misura Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] dimensioni superiori per rappresentare l'area nel piano, il volume nello spazio tridimensionale e così via. Quanto all'integrazione, egli definì innanzi tutto l'integrale di una funzione positiva definita sui reali come la misura bidimensionale della ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 ... 11
Vocabolario
miṡura
miṡura s. f. [lat. mensūra, der. di mensus part. pass. di metiri «misurare»]. – 1. a. Il valore numerico attribuito a una grandezza, ottenuto ed espresso come rapporto tra la grandezza data e un’altra della stessa specie assunta come unità (unità...
lavóro
lavoro lavóro s. m. [der. di lavorare]. – 1. a. In senso lato, qualsiasi esplicazione di energia (umana, animale, meccanica) volta a un fine determinato: il l. dell’uomo, dei buoi, di un cavallo, di una macchina, del computer; l. muscolare,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali