Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] compatti vale ancora, nella teoria delle equazioni integrali, la seguente importante affermazione: sia λ ≠ Così come A, anche (λI - A) e R (λ, A) sono chiusi e definiti su tutto E, e anche continui (secondo il teorema di Banach sui grafici chiusi) e R ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] . A seguito dello sviluppo del calcolo differenziale e integrale di Newton e Leibniz, sembrò che il mondo si polinomio di Jones era un caso particolare del polinomio di Tutte, definito da William T. Tutte e Hassler Whitney per grafi arbitrari e ...
Leggi Tutto
Nodi e fisica
Louis H. Kauffman
Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] ‛approssimazione di fase stazionaria' suggerisce una straordinaria serie di congetture sul comportamento delle versioni dell'integraledefinite in modo rigoroso, e queste congetture sono state in effetti verificate numericamente in molti casi ...
Leggi Tutto
MMark Kac
di Mark Kac
SOMMARIO: 1. Preliminari. □ 2. Alcune sottigliezze matematiche. □ 3. Alcune classi generali di processi stocastici con esempi: a) processi di Markov con spazio degli stati finito [...] forma seguente:
mdv+fvdt=√-2-D db(t), (78)
dalla quale segue che
La difficoltà consiste ora nel definire l'integrale di Stieltjes
Bisogna procedere con cautela nell'effettuare l'integrazione per parti, poiché con probabilità uno le traiettorie b ...
Leggi Tutto
Numeri, teoria dei
Larry Joel Goldstein
La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri
…, −4, −3, −2, [...] è dato approssimativamente dal cosiddetto logaritmo integrale,
[10] formula,
dove l' nel modo seguente:
[37] formula.
Una forma automorfa di peso k per Γ è una funzione f(z) definita per z in ℍ tale che:
a b
a) f(γ(z))(cz+d)−k=f(z), γ=()
c ...
Leggi Tutto
L'Ottocento: matematica. Meccanica analitica
Helmut Pulte
Meccanica analitica
La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] T e funzione delle forze U la forma che dà Hamilton a questo principio è la seguente:
La funzione principale S è definita come l'integrale della lagrangiana L preso tra il tempo iniziale t=0 e quello finale t, e quindi in generale può essere vista ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] che, date una sottovarietà W di V di dimensione k e una k-forma differenziale ω, la teoria dell'integrazione su V permette di definire l'integrale ∫Wω. Inoltre, il teorema di Stokes afferma che, se W è una sottovarietà chiusa e se ω è chiusa, questo ...
Leggi Tutto
L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele
Peter Schreiber
Geometria analitica, delle curve e delle superfici. Il problema delle parallele
A [...] strumenti come, per esempio, il calcolo differenziale e integrale. L'analogia con quanto accade in informatica è convincente che Descartes non possedeva un'idea precisa di come definire una curva in modo da poterla considerare un oggetto geometrico ...
Leggi Tutto
Misura e integrazione
M. Evans Munroe
Introduzione
La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] che, se f è misurabile sullo spazio di misura (X×Y, Σ, μ) e se uno dei tre integrali
è finito, i tre integrali di f sono definiti e uguali fra loro.
I segni di valore assoluto nell'ultima ipotesi del teorema di Tonelli sono essenziali. Questo può ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali
Haïm Brezis
Felix Browder
Equazioni differenziali alle derivate parziali
Lo studio delle equazioni [...] nel 1900 la teoria degli spazi Lp in termini dell'integrale di Lebesgue, e la loro completezza, non erano ancora è un aperto limitato in uno spazio di Banach X. Il grado è definito soltanto se non vi sono soluzioni dell'equazione sul bordo di G. Il ...
Leggi Tutto
integrale
agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...
integralismo
s. m. [der. di integrale]. – In senso ampio, ogni concezione che, in campo politico (ma anche sociale, economico, culturale), tenda a promuovere un sistema unitario, ad abolire cioè una pluralità di ideologie e di programmi, sia...