Lebesgue Henry-Leon
Lebesgue 〈lëbèg〉 Henry-Léon [STF] (Beauvais 1875 - Parigi 1941) Prof. di matematica nell'univ. di Poitiers e poi di Parigi; socio straniero dei Lincei (1925). ◆ [ANM] Decomposizione [...] di una funzione reale di punto: v. misura e integrazione: IV 3 f. ◆ [ANM] Integralesecondo L.-Stieltjes: v. misura e integrazione: IV 3 f. ◆ [ANM] Misura secondo L.: generalizzazione del concetto di misura di un insieme in uno spazio metrico: v ...
Leggi Tutto
misura
misura [Der. del lat. mensura, dal part. pass. mensus di metiri "misurare"] [LSF] Il valore di una grandezza, espresso come rapporto tra la grandezza data e un'altra grandezza della stessa specie [...] campi della matematica superiore: m. secondo Peano-Jordan, secondoLebesgue, ecc., alcune delle quali sono figure geometriche nello spazio ordinario, basata essenzialmente sul calcolo integrale, sia la formalizzazione del concetto di m., fondata ...
Leggi Tutto
integrabile
integràbile [agg. Der. del lat. integrabilis] [LSF] Che può essere integrato, sia nel signif. matematico (→ integrale), sia per significare che si tratta di cosa che può essere aggiunta o [...] la funzione exp(-x2). ◆ [ANM] Funzione i.: una funzione f tale che esista l'integrale ∫C f dC; a seconda della natura di questo integrale si parla di funzione i. secondoLebesgue, secondo Riemann, ecc.: v. misura e integrazione: III 3 f, 4 a. ◆ [MCC ...
Leggi Tutto
Chimica
Generalità
L’a. chimica si occupa dei metodi che permettono di determinare la composizione chimica di un campione. Genericamente ha il significato di scissione in elementi più piccoli e loro esame, [...] funzione. Il lavoro di sistemazione rigorosa dell’a. continua nella seconda metà del secolo a opera di matematici di prim’ordine, fra teoria ricordiamo: l’estensione del concetto di integrale (B. Riemann, H. Lebesgue, T.J. Stieltjes) a classi sempre ...
Leggi Tutto
Nel linguaggio scientifico, in presenza di fenomeni casuali (o aleatori), p. di un evento è il numero, compreso fra 0 e 1, che esprime il grado di possibilità che l’evento si verifichi, intendendo che [...] ) ξ definita su Ω e a valori in S. A seconda delle interpretazioni della funzione ξ, S viene detto spazio dei valori di p. (rispetto alla misura di Lebesgue) se esiste una funzione pξ(x) tale che:
L’integrale
(dove l’ultima uguaglianza vale se ...
Leggi Tutto
Fisica matematica
Andrei Tjurin
Vieri Mastropietro
L'interazione fra fisica e matematica è divenuta ancora più proficua negli ultimi anni. Nelle ricerche sulle interazioni fondamentali (gravitazionali, [...] fase di Dirac:
dove l'integrale di linea nell'esponente è considerato come nel caso degli istantoni e la seconda è data da un'orientazione della retta dei è piccolo, nel senso della misura di Lebesgue, implica che tale insieme di dati iniziali ...
Leggi Tutto
Sistemi dinamici
Giovanni Jona-Lasinio
Ya. G. Sinai
Origini e sviluppo, di Giovanni Jona-Lasinio
Risultati recenti, di Ya. G. Sinai
Origini e sviluppo di Giovanni Jona-Lasinio
SOMMARIO: 1. Introduzione. [...] trasforma le traiettorie del primo SD in quelle del secondo, ma il moto lungo le traiettorie può essere con m gradi di libertà possiede m integrali primi indipendenti che sono in involuzione, cioè continua ha misura di Lebesgue positiva. Una simile ...
Leggi Tutto
La grande scienza. Fisica matematica: recenti sviluppi
Gianfausto Dell'Antonio
Fisica matematica: recenti sviluppi
La fisica matematica si può definire come la disciplina scientifica che si propone [...] Y opportuna, e pertanto, per il teorema di Gauss, il suo integrale sull'intero spazio è un numero intero. Risulta quindi che all'interno è distribuita secondo la legge
[9] P({q, N(O)=k)}=k!-1(zL(O))kexp(-zL(O)),
dove L(O) è la misura di Lebesgue di O ...
Leggi Tutto
Caos deterministico
Angelo Vulpiani
Il programma di formalizzazione matematica della realtà inaugurato con la pubblicazione, nel 1687, dei Principia Mathematica di Isaac Newton è un punto di riferimento [...] valori discreti:
[1] formula
nel secondo caso la legge di evoluzione è
[2 somma è rimpiazzata, ovviamente, da un integrale). In un sistema ergodico una traiettoria In questo caso, la misura invariante è quella di Lebesgue: dμ(x)=dxdy. Se u/v è un ...
Leggi Tutto