• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
20 risultati
Tutti i risultati [35]
Matematica [20]
Storia della matematica [6]
Fisica [6]
Analisi matematica [5]
Geometria [4]
Fisica matematica [4]
Biografie [3]
Medicina [3]
Astronomia [3]
Algebra [3]

Misura e integrazione

Enciclopedia del Novecento (1979)

Misura e integrazione M. Evans Munroe Introduzione La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] del fatto che, se f è limitata e continua a tratti su [a, b], essa è integrabile secondo Riemann su [a, b]. Venne anche dimostrato che, se f è integrabile secondo Riemann su [a, b] e continua nel punto x∈(a, b), risulta Nel 1900 dunque si poteva ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: TEOREMA DELLA CONVERGENZA MONOTONA – FUNZIONALI LINEARI CONTINUI – CONVERGENZA INCONDIZIONATA – INTEGRAZIONE DI LEBESGUE – RELAZIONE DI EQUIVALENZA

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti Roger Cooke Brian Griffith La topologia degli insiemi di punti La topologia generale o topologia degli insiemi [...] messa in discussione nel 1881, quando Vito Volterra (1860-1940) costruì una funzione differenziabile la cui derivata non è integrabile (secondo Riemann). Il colpo di grazia all'intuizione fu dato da Giuseppe Peano (1858-1932) con la costruzione di un ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

VOLUME

Enciclopedia Italiana (1937)

VOLUME Giuseppe SCORZA DRAGONI La nozione di volume è per i solidi, cioè per le porzioni di spazio delimitate da superficie (semplici, chiuse e regolari), l'analogo di quello che la nozione di area [...] , descrive il solido dato. Gl'insiemi di punti per cui la funzione caratteristica è integrabile secondo Riemann sono anche detti insiemi misurabili secondo Jordan: a ciascuno di essi si può associare il numero uguale all'integrale della funzione ... Leggi Tutto
Mostra altri risultati Nascondi altri risultati su VOLUME (4)
Mostra Tutti

scaloide

Dizionario delle Scienze Fisiche (1996)

scaloide scalòide [Der. di scala con il suff. -oide] [ALG] La figura formata da più prismi (o cilindri) sovrapposti, che s'introduce per approssimare solidi come la piramide (fig. 1) o il cono. ◆ [ANM] [...] ., di una variabile oppure di due variabili; per es., si ricorda che l'integrale di una funzione y=f(x), integrabile secondo Riemann in un dato intervallo (a,b), è misurata dall'area del rettangoloide ABCD della fig. 2, che può essere considerata ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

integrabile

Dizionario delle Scienze Fisiche (1996)

integrabile integràbile [agg. Der. del lat. integrabilis] [LSF] Che può essere integrato, sia nel signif. matematico (→ integrale), sia per significare che si tratta di cosa che può essere aggiunta o [...] i.: una funzione f tale che esista l'integrale ∫C f dC; a seconda della natura di questo integrale si parla di funzione i. secondo Lebesgue, secondo Riemann, ecc.: v. misura e integrazione: III 3 f, 4 a. ◆ [MCC] Sistema i.: un sistema meccanico ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ANALISI MATEMATICA

L'Ottocento: matematica. Il rigore in analisi

Storia della Scienza (2003)

L'Ottocento: matematica. Il rigore in analisi Umberto Botta Il rigore in analisi L'eredità di Lagrange All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] sono maggiori di σ, qualunque sia σ, possa essere resa arbitrariamente piccola". Naturalmente, funzioni integrabili secondo Cauchy erano ancora integrabili secondo Riemann e il valore dell'integrale era lo stesso. Tuttavia si trattava di un'effettiva ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura Maurice Sion La teoria della misura Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] Venti del XX sec. la teoria dell'integrazione secondo Lebesgue era essenzialmente completata e la sua relazione con gli altri integrali (specialmente con gli integrali impropri secondo Riemann) completamente esplorata. I maggiori teoremi del calcolo ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

INTEGRAZIONE E MISURA

Enciclopedia Italiana - IV Appendice (1979)

INTEGRAZIONE E MISURA Giorgio Letta . La moderna teoria dell'i. si occupa del concetto generale di "misura" e del concetto di "integrale" relativo a un'arbitraria misura. Essa costituisce una notevole [...] estensione della classica teoria di Mengoli-Cauchy-Riemann (v. integrale, calcolo, XIX, p. 364), in quanto l'integrale si riduce poi all'integrale di MengoliCauchy quando f sia integrabile secondo Mengoli-Cauchy: e affinché ciò accada occorre e basta ... Leggi Tutto

spazio

Enciclopedia on line

spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] da un satellite terrestre, che, a seconda delle diverse opinioni degli Stati, è non previsti, il metodo analitico di Riemann si è mostrato più fecondo dei la potenza p-esima del loro modulo è integrabile in Ω. S. subordinato (o sottospazio). Dato ... Leggi Tutto
CATEGORIA: CORPI CELESTI – COSMOLOGIA – DISCIPLINE STRUMENTI E TECNICHE DI RICERCA – TEMI GENERALI – ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – GEOGRAFIA FISICA – GEOMETRIA – DISCIPLINE – DIRITTO COMUNITARIO E DIRITTO INTERNAZIONALE – STORIA E FILOSOFIA DEL DIRITTO – DOTTRINE TEORIE E CONCETTI – FILOSOFIA DEL DIRITTO – METAFISICA – POLITOLOGIA – TRASPORTI AEREI
TAGS: COMPLEMENTARE DI UN INSIEME – POSTULATO DELLE PARALLELE – CAMPO MAGNETICO TERRESTRE – OSSERVATORIO ASTRONOMICO – CORRISPONDENZA BIUNIVOCA
Mostra altri risultati Nascondi altri risultati su spazio (10)
Mostra Tutti

integrale

Enciclopedia on line

In matematica, operazione eseguita su una funzione di variabile reale o complessa per determinare l’area delimitata dalla funzione stessa e dall’intervallo su cui è definita. Il termine s’incontra per [...] Riemann; dell’i. di Mengoli-Cauchy-Riemann si conoscono varie generalizzazioni tra cui, particolarmente notevoli, l’i. secondo H. Lebesgue e l’i. secondo con passo s=xi+1−xi costante, e integrando la formula di di Gregory-Newton rispetto alla ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONI DI DUE O PIÙ VARIABILI – FUNZIONE DI VARIABILE COMPLESSA – INTEGRAZIONE PER SOSTITUZIONE – FUNZIONE DI VARIABILE REALE – INTERVALLO DI INTEGRAZIONE
Mostra altri risultati Nascondi altri risultati su integrale (3)
Mostra Tutti
1 2
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali