• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
77 risultati
Tutti i risultati [183]
Matematica [77]
Fisica [25]
Algebra [22]
Analisi matematica [20]
Fisica matematica [19]
Statistica e calcolo delle probabilita [14]
Storia della matematica [13]
Temi generali [13]
Filosofia [13]
Lingua [11]

La grande scienza. Teoria dei numeri

Storia della Scienza (2003)

La grande scienza. Teoria dei numeri Anatolij A. Karatsuba Teoria dei numeri La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] della disuguaglianza di Liouville [24] si è sviluppata la teoria dei numeri trascendenti. I numeri algebrici costituiscono un insieme numerabile, dunque 'quasi tutti' i numeri sono trascendenti, tuttavia dimostrare la trascendenza di un particolare ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

Stocastica

Enciclopedia del Novecento (1984)

MMark Kac di Mark Kac SOMMARIO: 1. Preliminari. □ 2. Alcune sottigliezze matematiche. □ 3. Alcune classi generali di processi stocastici con esempi: a) processi di Markov con spazio degli stati finito [...] , per esempio per i=2R il tempo medio di ricorrenza è 22R. Processi di Markov a tempi discreti con un insieme numerabile di stati conducono a matrici stocastiche infinite che sono molto più difficili da studiare, perché la teoria spettrale per questo ... Leggi Tutto
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – COEFFICIENTE DI CORRELAZIONE – GENETICA DELLE POPOLAZIONI – OSSERVAZIONE SPERIMENTALE – EQUAZIONE DI SCHRÖDINGER
Mostra altri risultati Nascondi altri risultati su Stocastica (2)
Mostra Tutti

Numeri, teoria dei

Enciclopedia della Scienza e della Tecnica (2007)

Numeri, teoria dei Larry Joel Goldstein La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri …, −4, −3, −2, [...] tipico è [35] formula dove n!=1∙2…n. Il matematico tedesco Georg Cantor dimostrò che i numeri algebrici formano un insieme numerabile, cioè che possono essere messi in corrispondenza biunivoca con gli interi. Egli dimostrò anche che i reali e ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – DOMINIO A FATTORIZZAZIONE UNICA – LEGGE DI RECIPROCITÀ QUADRATICA – CHARLES DE LA VALLÉE POUSSIN – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Numeri, teoria dei (4)
Mostra Tutti

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] M in RN è ricoperta (con sovrapposizioni) da un insieme numerabile di porzioni di varietà Uα ciascuna delle quali è (M) è dato da χ(M)=v−e+f. (55) Alternativamente, se bi è l'i-mo numero di Betti di M, cioè bi=dim Hi(M;R), allora χ(M)=b0−b1+b2=2−b1. ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

Misura e integrazione

Enciclopedia del Novecento (1979)

Misura e integrazione M. Evans Munroe Introduzione La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] da Fréchet, è la seguente: sia X σ-finito e introduciamo una partizione P di X in un insieme numerabile {En} di insiemi disgiunti misurabili di misura finita. Una funzione a valori reali f è sommabile per P quando è incondizionatamente convergente ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: TEOREMA DELLA CONVERGENZA MONOTONA – FUNZIONALI LINEARI CONTINUI – CONVERGENZA INCONDIZIONATA – INTEGRAZIONE DI LEBESGUE – RELAZIONE DI EQUIVALENZA

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] xn) tenda a 0 al crescere di m e n, converge a un limite x. Lo spazio è separabile se è unione di un insieme numerabile S e del suo derivato S′. Uno dei risultati significativi della tesi di Fréchet è la scoperta di una stretta connessione tra il suo ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Stocastica

Enciclopedia della Scienza e della Tecnica (2007)

Stocastica Mark Kac Storicamente i processi stocastici furono introdotti nel mondo della scienza (e più tardi della matematica) sotto una forma assai diversa da quella derivante dalla definizione formale [...] alcuna modifica, almeno dal punto di vista formale, per estendere la teoria al caso N=∞, cioè al caso di un insieme numerabile di stati. Anche in questo caso sono gli esempi e le applicazioni che vivificano la teoria. Noi ne discuteremo in dettaglio ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: COEFFICIENTE DI CORRELAZIONE – OSSERVAZIONE SPERIMENTALE – PROBABILITÀ CONDIZIONATA – FUNZIONE NON DECRESCENTE – EQUAZIONE DI DIFFUSIONE

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti Roger Cooke Brian Griffith La topologia degli insiemi di punti La topologia generale o topologia degli insiemi [...] (ciò è in evidente contrasto con la misura di Jordan, secondo la quale un insieme numerabile di singoli punti, ciascuno di lunghezza zero ‒ per es., l'insieme dei razionali in [0,1] ‒ ha lunghezza positiva). All'inizio Borel aveva osservato che ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi Gabriele Lolli La teoria degli insiemi La teoria degli insiemi è universalmente considerata, nella sua concezione e impostazione [...] 'unione di una infinità numerabile di insiemi numerabili è numerabile, che un sottoinsieme infinito di un insieme numerabile è numerabile e che togliendo a un insieme infinito un insieme numerabile si ottiene un insieme della stessa potenza di quello ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

non separabilita

Dizionario delle Scienze Fisiche (1996)

non separabilita nón separabilità [locuz. s.f.] [ALG] La proprietà di uno spazio non separabile, cioè di uno spazio topologico in cui non è possibile individuare un insieme numerabile ovunque denso. [...] ◆ [FAF] [MCQ] Violazione del principio di separabilità che interessa gli enti rappresentabili con funzioni d'onda: v. separabilità ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – EPISTEMOLOGIA – METAFISICA
1 2 3 4 5 6 7 8
Vocabolario
numeràbile
numerabile numeràbile agg. e s. m. [dal lat. numerabĭlis]. – Che può essere numerato, cioè distinto con numeri, oppure calcolato esattamente: ci darà la quantità esatta delle ore e minuti ..., se la frequenza fusse da noi n. (Galilei). In...
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali