• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
34 risultati
Tutti i risultati [110]
Matematica [34]
Fisica [14]
Algebra [13]
Storia della matematica [13]
Analisi matematica [13]
Biografie [11]
Religioni [10]
Temi generali [8]
Storia della fisica [7]
Filosofia [5]

Lagrange Giuseppe Luigi

Dizionario delle Scienze Fisiche (1996)

Lagrange Giuseppe Luigi Lagrange 〈lagràngë〉 (it. Lagràngia) Giuseppe Luigi (in fr. Joseph-Louis) [STF] (Torino 1736 - Parigi 1813) Prof. di matematica nella Scuola di artiglieria a Torino (1755), poi, [...] per descrivere il flusso stazionario di un fluido bidimensionale incomprimibile; permette di costruire la forma delle linee di velocità del fluido. ◆ [MCC] Funzione di L.: lo stesso che lagrangiana. ◆ [ANM] Identità di L.: nel calcolo vettoriale ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – CALCOLO DIFFERENZIALE – ACCADEMIA DI BERLINO – INDICE DI RIFRAZIONE – ÉCOLE POLYTECHNIQUE
Mostra altri risultati Nascondi altri risultati su Lagrange Giuseppe Luigi (5)
Mostra Tutti

numero

Enciclopedia on line

Ciascuno degli enti astratti che costituiscono una successione ordinata e che, fatti corrispondere ciascuno a ciascun oggetto preso in considerazione, servono a indicare la quantità degli oggetti costituenti [...] che ogni n. dispari abbastanza grande è somma di tre n. primi dispari. Una celebre identità, scoperta da Eulero, è la seguente dove per grado un numero primo p si ha il teorema di Lagrange secondo il quale il n. delle soluzioni della congruenza f ... Leggi Tutto
CATEGORIA: CRITICA RETORICA E STILISTICA – FILOSOFIA DEL LINGUAGGIO – GRAMMATICA – ALGEBRA – ARITMETICA – CONTABILITA – DOTTRINE TEORIE E CONCETTI – DOTTRINE TEORIE CONCETTI
TAGS: FUNZIONI DI VARIABILE COMPLESSA – SISTEMI DI EQUAZIONI, LINEARI – FUNZIONI DI VARIABILE REALE – RELAZIONE DI EQUIVALENZA – FUNZIONE ZETA DI RIEMANN
Mostra altri risultati Nascondi altri risultati su numero (6)
Mostra Tutti

Computazionali, metodi

Enciclopedia Italiana - VI Appendice (2000)

I m. c. permettono di risolvere con calcolatori elettronici, all'interno delle scienze applicate, i problemi complessi che sono formulabili tramite il linguaggio della matematica. Tali problemi raramente [...] j=1,...,N(h). A titolo esemplificativo, consideriamo il metodo (EA). Vale l'identità yj−uj=(yj−y*j)+(y*j−uj), dove y*j è definito dalla e l'intervallo di troncamento. C.F. Gauss, che era a conoscenza dei lavori di Lagrange (mentre era studente ... Leggi Tutto
TAGS: FORMULA FONDAMENTALE DEL CALCOLO INTEGRALE – TEOREMA FONDAMENTALE DELL'ALGEBRA – EQUAZIONE DIFFERENZIALE ORDINARIA – TOMOGRAFIA ASSIALE COMPUTERIZZATA – EQUAZIONI ALLE DERIVATE PARZIALI

SERIE

Enciclopedia Italiana - IV Appendice (1981)

SERIE (XXXI, p. 435; App. III, 11, p. 699) Tullio Viola 1. Serie numeriche. - Sia una serie a termini reali e positivi, le cui successive somme parziali indichiamo con Ai criteri di convergenza e divergenza [...] (con τn′ è indicata la somma dei divisori di n, inclusa l'unità). C) Serie di Lagrange. Sia assegnata un'equazione del tipo nella quale f seguenti condizioni: Grazie alle identità di Eulero [13], [14], le proprietà delle serie di Dirichlet ζ(z) e L ... Leggi Tutto
TAGS: CALCOLO DELLE VARIAZIONI – CALCOLO DIFFERENZIALE – CALCOLO DIFFERENZIALE – ANALISI FUNZIONALE – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su SERIE (6)
Mostra Tutti

NUMERICI, CALCOLI

Enciclopedia Italiana - IV Appendice (1979)

NUMERICI, CALCOLI (XXV, p. 29; App. III, 11, p. 286) Enzo Aparo Introduzione. - La nozione di c. n. si può introdurre, facendo riferimento al termine latino calculus (piccola pietra, pedina), nel modo [...] 4, ... relative alla funzione f. vale l'identità: Se si sopprime al 2° membro l'ultimo termine, si ha il polinomio di grado n − 1 al più, che in xi acquista il valore yi = f(xi), i ∈ {1, ..., n}. Il metodo di Lagrange fa uso dei polinomi vale zero in ... Leggi Tutto
Mostra altri risultati Nascondi altri risultati su NUMERICI, CALCOLI (11)
Mostra Tutti

Algebra

Enciclopedia del Novecento (1975)

Algebra Irving Kaplansky sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] Lagrange: se G è un gruppo finito ed H è un suo sottogruppo, l'ordine di H (l'ordine di ab) dove a destra il prodotto di Jordan è indicato semplicemente per giustapposizione di simboli, come nell'identità stessa. L'identità di Glennie: 2{xzx}{y{zy2z}x ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ALGEBRA – COSTRUZIONI CON RIGA E COMPASSO – DOMINIO A FATTORIZZAZIONE UNICA – INSIEME PARZIALMENTE ORDINATO – RAPPRESENTAZIONI IRRIDUCIBILI
Mostra altri risultati Nascondi altri risultati su Algebra (9)
Mostra Tutti

Numeri, teoria dei

Enciclopedia del Novecento (1979)

Numeri, teoria dei LLarry Joel Goldstein di Larry Joel Goldstein SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] χ è l'unico carattere modulo 1 che è identica- mente 1, allora L(s, χ) è la funzione zeta di Riemann. In generale L(s, χ) si rappresenta di quattro quadrati. Questo è il teorema di Lagrange. Questi risultati sono chiaramente indicativi del tipo di ... Leggi Tutto
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – LEGGE DI RECIPROCITÀ QUADRATICA – DOMINIO A FATTORIZZAZIONE UNICA – COSTRUIBILE CON RIGA E COMPASSO – TEOREMA DI KRONECKER-WEBER

L'Ottocento: matematica. Le origini della teoria dei gruppi

Storia della Scienza (2003)

L'Ottocento: matematica. Le origini della teoria dei gruppi Jeremy Gray Le origini della teoria dei gruppi La teoria di Galois e la soluzione algebrica delle equazioni algebriche La teoria di Galois [...] una vaga approvazione da parte della Royal Society di Londra e il cauto parere di Lagrange secondo il quale tali lavori, per quanto di coniugio del gruppo, che in questo caso è 3 (l'identità, le tre permutazioni di ordine 2 e le due permutazioni di ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Teoria dei numeri

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria dei numeri Catherine Goldstein Teoria dei numeri Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] accaduto nel XVIII sec. a opera di Lagrange. Il nucleo più tecnico di questa teoria, trattata nei capitoli centrali presenta fenomeni analoghi a quelli messi in luce da Kummer: per esempio, dall'identità (1+2√−5)(1−2√−5)=21=3×7 risulta che anche per i ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] . Il metodo dei moltiplicatori di Lagrange per la soluzione di problemi di estremo vincolato era strettamente legato è possibile modificare la relazione [27] ‒ nota come seconda identità di Green ‒ in modo opportuno. Supponiamo, per esempio, che ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
1 2 3 4
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali