In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali.
Cenni storiciL’antichità
- L’origine della g. è legata a concreti problemi di misurazione del terreno (nacque [...] gli enti primitivi). Tra le diverse sistemazioni della g. elementare secondo questa veduta moderna, degna di nota è quella di D. Hilbert, nella quale i postulati che caratterizzano i punti, le rette e i piani sono suddivisi in 5 gruppi come segue: 1 ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I fondamenti della geometria
Umberto Bottazzini
I fondamenti della geometria
Verso la metà del XIX sec. Georg Friedrich Bernhard Riemann (1826-1866) [...] di enumerare gli assiomi e i postulati più o meno camuffati che servono di fondamento alle diverse teorie matematiche. Il sig. Hilbert ha ottenuto i risultati più brillanti. Sembra a prima vista che questo dominio sia assai limitato e che non vi sia ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] Euclide, le opere di Richard Dedekind (1831-1916) e Giuseppe Peano (1858-1932) per la teoria dei numeri e di Hilbert per la geometria sono considerate dei modelli di riferimento, come successivamente quelle di Jean Leray (Leray 1949), Cartan, Samuel ...
Leggi Tutto
Invarianti, Teoria degli
Claudio Procesi
La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] di casi notevoli in cui la risposta è positiva e in effetti il loro interesse va ben oltre quello del problema di Hilbert e si innesta nella teoria dei gruppi di Lie e dei gruppi algebrici.
Numerosi autori ‒ tra cui Ernst Fischer (1911) e Adolf ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] di Atiyah-Hirzebruch, ma, ciò che è ancora più importante, la K-omologia duale, ammettono come quadro naturale le tecniche degli spazi di Hilbert e dell'analisi funzionale. I cicli nel gruppo di K-omologia K*(X) di uno spazio compatto X sono dati da ...
Leggi Tutto
In matematica, si dice di struttura nella quale sia definita un’operazione che non è commutativa (➔ commutativa, proprietà). Tali strutture hanno assunto un ruolo importante nella caratterizzazione della [...] quelle di algebre n. a essi associate. Esempi di algebre n. sono le algebre di operatori su uno spazio di Hilbert a dimensione finita. In generale, l’associazione a uno spazio funzionale di un’algebra si realizza dimostrando che le proprietà di ...
Leggi Tutto
Selezione di 7 problemi matematici proposti nel 2000 dal Clay Mathematics Institute (CMI) di Cambridge, Massachusetts, che ha stanziato per la risoluzione di ognuno di essi un premio di 1 milione di dollari. [...] che hanno resistito ai tentativi di soluzione nel corso degli anni e dovrebbero servire da guida per i matematici, così come fecero i problemi proposti da D. Hilbert nel 1900. Tra i 7 problemi solo l’ipotesi di Riemann si trovava tra i 23 problemi di ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] anche in fisica, e in particolare in meccanica quantistica, dove gli stati di un sistema sono descritti da vettori di uno s. di Hilbert.
S. metrico (o distanziale). S. nel quale è definita una distanza d tra due qualunque elementi x, y tale che d(x ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] dimensione. Come si è visto, l'approccio puramente geometrico era allora confinato a curve e superfici. I metodi di Hilbert si univano quindi fruttuosamente a quelli di Kronecker, che molto si era adoperato per sviluppare una teoria algebrica delle ...
Leggi Tutto
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
risolubilita
risolubilità s. f. [der. di risolubile]. – Il fatto di essere risolubile, la condizione di ciò che può essere risolto: r. di un dubbio, di un problema, di un enigma; r. di un contratto, in diritto privato; r. di un problema geometrico...