• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
50 risultati
Tutti i risultati [481]
Analisi matematica [49]
Matematica [217]
Biografie [58]
Algebra [56]
Fisica [54]
Storia della matematica [46]
Fisica matematica [33]
Filosofia [28]
Geometria [24]
Temi generali [26]

Hilbert, David

Dizionario delle Scienze Fisiche (1996)

Hilbert, David Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆  Azione di H.-Einstein: v. gravità [...] quantistica: III 79 e. ◆  Cubo di H.: particolare sottoinsieme in uno spazio di H. a infinite dimensioni, costituito dalle successioni tali che 0≤xi≤2-i, con i=1,2,...; è il prototipo di insieme compatto ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: EQUAZIONE DI BOLTZMANN – MECCANICA DEI FLUIDI – GEOMETRIA EUCLIDEA – SPAZIO VETTORIALE – SPAZIO DI BANACH
Mostra altri risultati Nascondi altri risultati su Hilbert, David (6)
Mostra Tutti

spazio di Hilbert

Enciclopedia della Scienza e della Tecnica (2008)

spazio di Hilbert Arrigo Cellina Per poter enunciare il teorema di Pitagora nel piano, occorre definire quando due vettori sono tra loro ortogonali; ciò si ottiene dalla nozione di prodotto scalare [...] , che associa a due vettori un numero reale (questo numero è zero se i due vettori sono ortogonali). Uno spazio di Hilbert ℋ è uno spazio di Banach che generalizza il normale piano euclideo, ossia su cui è definito un prodotto scalare. Si tratta ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONI A QUADRATO SOMMABILE – CLASSI DI EQUIVALENZA – TEOREMA DI PITAGORA – PRODOTTO SCALARE – SPAZIO DI BANACH
Mostra altri risultati Nascondi altri risultati su spazio di Hilbert (1)
Mostra Tutti

hilbertiano

Dizionario delle Scienze Fisiche (1996)

hilbertiano hilbertiano [agg. Der. del cognome di D. Hilbert] [ALG] [ANM] Qualifica di enti e nozioni introdotti da D. Hilbert, equivalente a "di Hilbert": spazio h. o spazio di Hilbert, ecc. ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

operatori compatti

Enciclopedia della Scienza e della Tecnica (2008)

operatori compatti Luca Tomassini Operatori lineari su uno spazio di Hilbert ℋ vicini in un senso opportuno agli operatori di dimensione finita, ovvero agli operatori che mandano ℋ in un sottospazio [...] x,x)≤1) è chiusa e limitata ma non compat ta. Segue immediatamente che l’operatore identità su uno spazio di Hilbert di dimensione infinita non è compatto, mentre lo sono per definizione gli operatori di dimensione finita. Questi ultimi permettono di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: OPERATORE COMPATTO – OPERATORE IDENTITÀ – ANALISI MATEMATICA – SPAZIO DI HILBERT – OPERATORE LINEARE

autoaggiunto

Dizionario delle Scienze Fisiche (1996)

autoaggiunto autoaggiunto [agg. Comp. di auto- e aggiunto] [ANM] Di operatore lineare che è identico al suo operatore aggiunto (anche come s.m.); il termine è sinon. di hermitiano (←) per operatori definiti [...] su spazi finito-dimensionali, mentre non lo è se lo spazio è infinito-dimensionale; precis., dato uno spazio di Hilbert H, l'a. è un operatore lineare A per cui è (a, Ab)=(Aa, b) con a∈H, b∈H. ◆ [ALG] Elemento a., o hermitiano, di un'algebra di ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: SPAZIO DI HILBERT – OPERATORE LINEARE
Mostra altri risultati Nascondi altri risultati su autoaggiunto (2)
Mostra Tutti

coniugata di Fenchel

Enciclopedia della Scienza e della Tecnica (2008)

coniugata di Fenchel Arrigo Cellina Sia f una funzione convessa definita su uno spazio di Hilbert X; si chiama polare di f, o trasformata o coniugata di Fenchel, o di Legendre, la funzione f * definita [...] da Poiché, per ogni x fissato, la funzione che compare alla destra dell’equazione precedente è affine (nella variabile z), si ha che f *, supremo di una famiglia di funzioni affini, è una funzione convessa. ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONE CONVESSA – SPAZIO DI HILBERT – FUNZIONI AFFINI

L'Ottocento: matematica. Teoria dei numeri

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria dei numeri Catherine Goldstein Teoria dei numeri Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] rappresentava in parte il punto di vista del circolo di Christian Felix Klein (1849-1925) e alla quale collaborò anche Hilbert, riservò invece un posto importante ai campi di numeri algebrici e alla teoria analitica nel volume sulla teoria dei numeri ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] un autovalore (che può essere di molteplicità infinita). Infine, Sp(U) non si riduce a 0 se U non è 0; 2) E è la somma di Hilbert di tutti gli autospazi E(λn,U), per λn distinti, ed E(0,U); 3) l'operatore (U−ζI)−1 si può scrivere nella forma [12], e ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] per i coefficienti di Fourier delle funzioni di classe L2. Nella primavera del 1907 l'articolo di Fatou e il lavoro di Hilbert ispirarono a Riesz il teorema noto come teorema di Riesz-Fischer. A quanto pare, qualcosa di simile accadde a Fischer. Per ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Haar Alfred

Dizionario delle Scienze Fisiche (1996)

Haar Alfred Haar 〈hàar〉 Alfred [STF] (Budapest 1885 - Szeged 1933) Prof. di matematica nell'univ. di Szeged (1912). ◆ [ALG] Metodo di Hilbert-H.: v. variazioni, calcolo delle: VI 466 f sgg. ◆ [ALG] Misura [...] di H.: v. algebre di operatori: I 94 b. ◆ [ANM] Teorema generale di esistenza del minimo di H. e teorema di semicontinuità di H.: v. variazioni, calcolo delle: VI 467 a ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su Haar Alfred (2)
Mostra Tutti
1 2 3 4 5
Vocabolario
hilbertiano
hilbertiano 〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
risolubilità
risolubilita risolubilità s. f. [der. di risolubile]. – Il fatto di essere risolubile, la condizione di ciò che può essere risolto: r. di un dubbio, di un problema, di un enigma; r. di un contratto, in diritto privato; r. di un problema geometrico...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali