• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
15 risultati
Tutti i risultati [481]
Matematica [217]
Biografie [58]
Algebra [56]
Fisica [54]
Analisi matematica [49]
Storia della matematica [46]
Fisica matematica [33]
Filosofia [28]
Geometria [24]
Temi generali [26]

Hilbert, David

Dizionario delle Scienze Fisiche (1996)

Hilbert, David Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆  Azione di H.-Einstein: v. gravità [...] quantistica: III 79 e. ◆  Cubo di H.: particolare sottoinsieme in uno spazio di H. a infinite dimensioni, costituito dalle successioni tali che 0≤xi≤2-i, con i=1,2,...; è il prototipo di insieme compatto ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: EQUAZIONE DI BOLTZMANN – MECCANICA DEI FLUIDI – GEOMETRIA EUCLIDEA – SPAZIO VETTORIALE – SPAZIO DI BANACH
Mostra altri risultati Nascondi altri risultati su Hilbert, David (6)
Mostra Tutti

risolubilita

Dizionario delle Scienze Fisiche (1996)

risolubilita risolubilità [Der. di risolubile "il fatto di essere risolubile"] [ALG] [FAF] Principio di r.: enunciato da D. Hilbert nel 1900, affermava che ogni problema matematico ben posto ammette [...] soluzioni; successiv. Hilbert, considerando che il principio stesso necessitava di una dimostrazione, rinunciò a sostenerlo ed enunciò in suo luogo il cosiddetto problema fondamentale della matematica o problema della decisione, che si propone di ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – EPISTEMOLOGIA – METAFISICA

Haar Alfred

Dizionario delle Scienze Fisiche (1996)

Haar Alfred Haar 〈hàar〉 Alfred [STF] (Budapest 1885 - Szeged 1933) Prof. di matematica nell'univ. di Szeged (1912). ◆ [ALG] Metodo di Hilbert-H.: v. variazioni, calcolo delle: VI 466 f sgg. ◆ [ALG] Misura [...] di H.: v. algebre di operatori: I 94 b. ◆ [ANM] Teorema generale di esistenza del minimo di H. e teorema di semicontinuità di H.: v. variazioni, calcolo delle: VI 467 a ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su Haar Alfred (2)
Mostra Tutti

Schmidt Erhard

Dizionario delle Scienze Fisiche (1996)

Schmidt Erhard Schmidt 〈šmìt〉 Erhard [STF] (Dorpat 1876 - Berlino 1959) Prof. di matematica nell'univ. di Berlino (1917). ◆ [ANM] Equazione, o funzione, di Hilbert-S.: v. equazioni integrali: II 479 [...] c. ◆ [ANM] Metodo di riduzione di Ljapunov-S.: v. analisi non lineare: I 140 d. ◆ [ALG] Ortonormalizzazione di Gram-S.: → Gram, Jørgen Pedersen ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: MATEMATICA – BERLINO – DORPAT
Mostra altri risultati Nascondi altri risultati su Schmidt Erhard (1)
Mostra Tutti

Littlewood John Edensor

Dizionario delle Scienze Fisiche (1996)

Littlewood John Edensor Littlewood 〈lìtluud〉 John Edensor [STF] (Rochester 1885 - Cambridge 1977) Prof. di matematica nell'univ. di Cambridge (1928). ◆ [ALG] Teorema di L.: teorema che ha confermato [...] e precisato la risposta affermativa data nel 1910 da D. Hilbert alla congettura di E. Waring secondo la quale per ogni intero k≥2 esiste un numero s(k) tale che qualunque intero n si può esprimere come somma di s(k) potenze k-esime di interi. ◆ [ANM] ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA

Uryson Pavel Samuilovic

Dizionario delle Scienze Fisiche (1996)

Uryson Pavel Samuilovic Uryson (o Urysohn) 〈urïsòn〉 Pavel Samuilovič [STF] (Odessa 1898 - Batz, Loira, 1924) Libero docente di matematica nell'univ. di Mosca (1921). ◆ [ALG] Lemma di U.: afferma che [...] che f(x)=0 se x∈A, f(x)=1 se x∈B, 0≤f(x)≤1 se x∉A⋃B. ◆ [ANM] Teorema di U.: ogni spazio topologico normale, provvisto di una base numerabile di aperti, è omeomorfo a un sottospazio di uno spazio di Hilbert (e pertanto, in partic., è metrizzabile). ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su Uryson Pavel Samuilovic (2)
Mostra Tutti

La grande scienza. Cronologia scientifica: 1951-1960

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1951-1960 1951-1960 1951 Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] ai contributi di A.M. Gleason, di D. Montgomery e di L. Zippin viene risolta una parte del V problema di Hilbert: ogni gruppo topologico localmente euclideo è un gruppo di Lie. Sulle varietà algebriche reali. John F. Nash dimostra che ogni varietà ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

Waring Edward

Dizionario delle Scienze Fisiche (1996)

Waring Edward Waring 〈uèërin〉 Edward [STF] (Shrewsbury 1734 - ivi 1798) Prof. nell'univ. di Cambridge (1770). ◆ [ALG] Formule di W.: formule che permettono di esprimere xn+yn secondo le quantità x+y [...] di non più di r potenze n-esime (di numeri interi)". Una prima dimostrazione nel caso generale fu data da D. Hilbert (1909), che assegnava un limite superiore per r (in funzione di n), ulteriormente riducibile. Un limite superiore molto minore e ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA

La grande scienza. Cronologia scientifica: 1961-1970

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1961-1970 1961-1970 1961 Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] dimostra una notevole estensione del teorema con cui nel 1934 O. Gelfond e T. Schneider, indipendentemente, avevano risolto il settimo problema di Hilbert: provare che, se α, β sono algebrici, α è diverso da 0 e da 1 e β irrazionale, allora αβ è ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – STORIA DELLA BIOLOGIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

Banach Stefan

Dizionario delle Scienze Fisiche (1996)

Banach Stefan Banach 〈bànak〉 Stefan [STF] (Cracovia 1892 - Leopoli 1945) Prof. (1924) nell'univ. di Leopoli. ◆ [ALG] Algebra di B. (propr., algebra commutativa di B.): è un'algebra nella quale si sia [...] normato e completo, cioè tale che ogni successione di Cauchy converge a un elemento dello spazio; per es., uno spazio di Hilbert: v. funzionale, analisi: II 771 a. ◆ [ALG] Teorema di B.-Alaoglu: v. algebre di operatori: I 98 a. ◆ [ALG] Teorema di ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA
TAGS: ANALISI FUNZIONALE – SPAZIO DI HILBERT – SPAZIO VETTORIALE – COMMUTATIVA – CRACOVIA
Mostra altri risultati Nascondi altri risultati su Banach Stefan (2)
Mostra Tutti
1 2
Vocabolario
hilbertiano
hilbertiano 〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
risolubilità
risolubilita risolubilità s. f. [der. di risolubile]. – Il fatto di essere risolubile, la condizione di ciò che può essere risolto: r. di un dubbio, di un problema, di un enigma; r. di un contratto, in diritto privato; r. di un problema geometrico...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali