Hilbert, David
Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆ Azione di H.-Einstein: v. gravità [...] quantistica: III 79 e. ◆ Cubo di H.: particolare sottoinsieme in uno spazio di H. a infinite dimensioni, costituito dalle successioni tali che 0≤xi≤2-i, con i=1,2,...; è il prototipo di insieme compatto ...
Leggi Tutto
risolubilita
risolubilità [Der. di risolubile "il fatto di essere risolubile"] [ALG] [FAF] Principio di r.: enunciato da D. Hilbert nel 1900, affermava che ogni problema matematico ben posto ammette [...] soluzioni; successiv. Hilbert, considerando che il principio stesso necessitava di una dimostrazione, rinunciò a sostenerlo ed enunciò in suo luogo il cosiddetto problema fondamentale della matematica o problema della decisione, che si propone di ...
Leggi Tutto
Haar Alfred
Haar 〈hàar〉 Alfred [STF] (Budapest 1885 - Szeged 1933) Prof. di matematica nell'univ. di Szeged (1912). ◆ [ALG] Metodo di Hilbert-H.: v. variazioni, calcolo delle: VI 466 f sgg. ◆ [ALG] Misura [...] di H.: v. algebre di operatori: I 94 b. ◆ [ANM] Teorema generale di esistenza del minimo di H. e teorema di semicontinuità di H.: v. variazioni, calcolo delle: VI 467 a ...
Leggi Tutto
Schmidt Erhard
Schmidt 〈šmìt〉 Erhard [STF] (Dorpat 1876 - Berlino 1959) Prof. di matematica nell'univ. di Berlino (1917). ◆ [ANM] Equazione, o funzione, di Hilbert-S.: v. equazioni integrali: II 479 [...] c. ◆ [ANM] Metodo di riduzione di Ljapunov-S.: v. analisi non lineare: I 140 d. ◆ [ALG] Ortonormalizzazione di Gram-S.: → Gram, Jørgen Pedersen ...
Leggi Tutto
Littlewood John Edensor
Littlewood 〈lìtluud〉 John Edensor [STF] (Rochester 1885 - Cambridge 1977) Prof. di matematica nell'univ. di Cambridge (1928). ◆ [ALG] Teorema di L.: teorema che ha confermato [...] e precisato la risposta affermativa data nel 1910 da D. Hilbert alla congettura di E. Waring secondo la quale per ogni intero k≥2 esiste un numero s(k) tale che qualunque intero n si può esprimere come somma di s(k) potenze k-esime di interi. ◆ [ANM] ...
Leggi Tutto
Uryson Pavel Samuilovic
Uryson (o Urysohn) 〈urïsòn〉 Pavel Samuilovič [STF] (Odessa 1898 - Batz, Loira, 1924) Libero docente di matematica nell'univ. di Mosca (1921). ◆ [ALG] Lemma di U.: afferma che [...] che f(x)=0 se x∈A, f(x)=1 se x∈B, 0≤f(x)≤1 se x∉A⋃B. ◆ [ANM] Teorema di U.: ogni spazio topologico normale, provvisto di una base numerabile di aperti, è omeomorfo a un sottospazio di uno spazio di Hilbert (e pertanto, in partic., è metrizzabile). ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] ai contributi di A.M. Gleason, di D. Montgomery e di L. Zippin viene risolta una parte del V problema di Hilbert: ogni gruppo topologico localmente euclideo è un gruppo di Lie.
Sulle varietà algebriche reali. John F. Nash dimostra che ogni varietà ...
Leggi Tutto
Waring Edward
Waring 〈uèërin〉 Edward [STF] (Shrewsbury 1734 - ivi 1798) Prof. nell'univ. di Cambridge (1770). ◆ [ALG] Formule di W.: formule che permettono di esprimere xn+yn secondo le quantità x+y [...] di non più di r potenze n-esime (di numeri interi)". Una prima dimostrazione nel caso generale fu data da D. Hilbert (1909), che assegnava un limite superiore per r (in funzione di n), ulteriormente riducibile. Un limite superiore molto minore e ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] dimostra una notevole estensione del teorema con cui nel 1934 O. Gelfond e T. Schneider, indipendentemente, avevano risolto il settimo problema di Hilbert: provare che, se α, β sono algebrici, α è diverso da 0 e da 1 e β irrazionale, allora αβ è ...
Leggi Tutto
Banach Stefan
Banach 〈bànak〉 Stefan [STF] (Cracovia 1892 - Leopoli 1945) Prof. (1924) nell'univ. di Leopoli. ◆ [ALG] Algebra di B. (propr., algebra commutativa di B.): è un'algebra nella quale si sia [...] normato e completo, cioè tale che ogni successione di Cauchy converge a un elemento dello spazio; per es., uno spazio di Hilbert: v. funzionale, analisi: II 771 a. ◆ [ALG] Teorema di B.-Alaoglu: v. algebre di operatori: I 98 a. ◆ [ALG] Teorema di ...
Leggi Tutto
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
risolubilita
risolubilità s. f. [der. di risolubile]. – Il fatto di essere risolubile, la condizione di ciò che può essere risolto: r. di un dubbio, di un problema, di un enigma; r. di un contratto, in diritto privato; r. di un problema geometrico...