vettore
vettóre [agg. m. e s.m. (per il f. → vettrice) Der. del lat. vector -oris "conducente, portatore", dal part. pass. vectus di vehere "condurre, portare"] [ALG] Ente che permette di descrivere [...] : (a) [TRM] v. colonna le cui componenti sono le variabili di stato di un sistema. (b) [MCQ] v. nello spazio di Hilbert che corrisponde allo stato di un sistema. ◆ [EMG] [MCC] V. d'onda: il v. che caratterizza una propagazione per onde monocromatiche ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali ordinarie
Jean Mawhin
Equazioni differenziali ordinarie
Accanto a sostanziali progressi nella teoria delle equazioni [...] Nikolaevič Kolmogorov (1903-1987), che introdurrà il metodo KAM (Kolmogorov-Arnold-Moser).
Il XVI problema proposto da David Hilbert (1862-1943) al Congresso internazionale dei matematici di Parigi nel 1900, richiedeva tra l'altro di determinare il ...
Leggi Tutto
LEVI, Beppo
Salvatore Coen
Nacque a Torino il 14 maggio 1875 da Giulio Giacomo e Sara Diamantina (Mentina) Pugliese. Presso l'Università di Torino compì i suoi studi fino al conseguimento della laurea [...] principio di Dirichlet (in Rend. del Circolo matematico di Palermo, XXII [1906], 293-360). Partendo da fondamentali risultati di D. Hilbert e con l'uso anche della nuova teoria dell'integrazione di H. Lebesgue, il L. riuscì a fornire una soluzione ...
Leggi Tutto
DE FRANCHIS, Michele
Aldo Brigaglia
Nacque a Palermo il 6 apr. 1875 da Girolamo e da Matilde Viola.
Dopo gli studi superiori, si iscrisse all'università di Palermo e si laureò in matematica nel 1896, [...] della sua rivista (oltre 1.200 copie). Del direttivo del Circolo facevano parte i più illustri matematici mondiali, dai tedeschi D. Hilbert e F. Klein ai francesi E. Picard ed E. Borel, all'americano W. F. Osgood.
Lo scoppio della prima guerra ...
Leggi Tutto
Euclide
Pier Daniele Napolitani
Il padre della geometria
Euclide, vissuto agli inizi del 3° secolo a.C., è noto soprattutto per i suoi Elementi, una vasta raccolta in cui espone i concetti fondamentali [...] definizioni e degli assiomi, producendo nuove concezioni e programmi di ricerca. In particolare il matematico tedesco David Hilbert propose una nuova sistemazione della geometria euclidea (quella che studiamo a scuola) in cui metteva in evidenza ...
Leggi Tutto
NUMERICI, CALCOLI (XXV, p. 29; App. III, 11, p. 286)
Enzo Aparo
Introduzione. - La nozione di c. n. si può introdurre, facendo riferimento al termine latino calculus (piccola pietra, pedina), nel modo [...] Ritz si sostituisce al problema L(u) = f, con L generico operatore autoaggiunto e definito positivo, u ∈ F, F spazio di Hilbert, quello consistente nel minimizzare su F il funzionale J(u)=(Lu, u)−2(u, f).
Si considera una successione di sottospazi Fh ...
Leggi Tutto
OPERATORI; OPERAZIONALE, CALCOLO (od operatorio, calcolo)
Tullio Viola
Riteniamo opportuno aggiungere alle considerazioni svolte nelle voci: operatori (App. III, 11, p. 317) e simbolico, calcolo (App. [...] l'analyse moderne, ivi 1965; R. Edwards, Functional analysis; theory and applications, New York 1965; K. Maurin, Methods of Hilbert spaces, Varsavia 1967; G. Chilov, Analyse mathématique, fonctions d'une variable, parte III, Mosca 1973; A. Kolmogorov ...
Leggi Tutto
Irreversibilità
JJoel L. Lebowitz
Sommario: 1. Introduzione: a) considerazioni qualitative; b) considerazioni quantitative; c) teoria microscopica. 2. Il problema dell'irreversibilità macroscopica. [...] il flusso incompressibile e reversibile nello spazio delle fasi è sostituito da un'evoluzione unitaria in uno spazio di Hilbert. In particolare, non crediamo che il processo di misura quantistica sia una nuova sorgente di irreversibilità e pensiamo ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La scuola di Leopoli-Varsavia
Ettore Casari
La scuola di Leopoli-Varsavia
Gli inizi
La singolare vicenda intellettuale divenuta nota come 'Scuola [...] di Varsavia:
Le discipline deduttive costituiscono l'oggetto della metodologia delle scienze deduttive, che oggi, seguendo Hilbert viene solitamente detta 'metamatematica', più o meno nello stesso senso in cui le entità spaziali costituiscono l ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Renato Caccioppoli
Luca Dell'Aglio
Figura chiave nello sviluppo del pensiero matematico in Italia durante la prima parte del Novecento, le sue ricerche spaziano nei vari rami dell’analisi matematica, [...] , dotate di derivate seconde continue. Questo risultato, riguardante uno dei celebri problemi, il XIX, enunciati da David Hilbert (1862-1943) nel 1900 al Congresso internazionale dei matematici di Parigi, fu esteso in seguito in modo particolare ...
Leggi Tutto
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
risolubilita
risolubilità s. f. [der. di risolubile]. – Il fatto di essere risolubile, la condizione di ciò che può essere risolto: r. di un dubbio, di un problema, di un enigma; r. di un contratto, in diritto privato; r. di un problema geometrico...