numero di condizionamento
Alfio Quarteroni
Si consideri il problema di trovare u tale che F(u,d)=0, dove d è l’insieme dei dati da cui dipende la soluzione e F esprime la relazione (detta anche legge [...] a uno, mentre A si dice mal condizionata se K(A)>>1. Un esempio notevole di matrice mal condizionata è la matrice di Hilbert H con Hij=1/(i+j−1), per i,j=1,...,n. Tale matrice è simmetrica, non singolare e ha un numero di condizionamento che ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] della metrica di Bergman che si può definire su ogni dominio limitato M in Cn nel modo seguente. Sia H lo spazio di Hilbert di funzioni olomorfe di quadrato sommabile su M e sia f0, f1, f2, ... una base ortonormale completa per H. La funzione nucleo ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] . Arnold (si veda Browder 1976) ha proposto di interpretare questa ubiquità come un equivalente moderno di un problema di Hilbert per indirizzare lo sviluppo della matematica. Arnold osserva che tali diagrammi sono presenti in aree come le algebre di ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La scuola matematica di Mosca
Sergej Sergeevic Demidov
La scuola matematica di Mosca
La matematica a San Pietroburgo e a Mosca
Nella seconda [...] primi, mentre il ciclo di lavori di Gel′fond di questo periodo si concluse con la sua risoluzione, nel 1934, del VII problema di Hilbert: αβ è un numero trascendente se α e β sono algebrici, α è diverso da 0 e 1 e β è irrazionale.
In quegli stessi ...
Leggi Tutto
L'Ottocento: matematica. La geometria non euclidea
Rossana Tazzioli
La geometria non euclidea
Alla base dei suoi Elementi Euclide aveva posto un certo numero di definizioni (o 'termini') e di assiomi [...] presso il Dipartimento di matematica dell'Università di Pavia. Dopo la morte di Beltrami, in un articolo del 1901 David Hilbert (1862-1943) dimostrò rigorosamente che il modello di Beltrami è valido solo localmente.
A un attento studio della memoria ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Vito Volterra
Angelo Guerraggio
Fino agli anni Settanta del secolo scorso, le tracce di Vito Volterra nel mondo matematico italiano sono rimaste piuttosto deboli. La maturazione di una diversa sensibilità [...] tenuta al Congresso internazionale dei matematici di Parigi su invito di Jules-Henri Poincaré (1854-1912) – il Congresso dove David Hilbert (1862-1943) indicò 23 problemi per la ricerca del secolo che stava per cominciare – e dall’invito della Regia ...
Leggi Tutto
LAURICELLA, Giuseppe
Luca Dell'Aglio
Nacque il 15 dic. 1867 a Girgenti (attuale Agrigento), da Giuseppe e da Giuseppa Megna. Allievo della Scuola normale superiore di Pisa, si laureò in matematica nel [...] uso delle tecniche introdotte da I. Fredholm - al quale, come è noto, si devono, così come a D. Hilbert, i maggiori sviluppi della teoria delle equazioni integrali all'inizio del Novecento - nell'esame di problematiche diverse: equilibrio di corpi ...
Leggi Tutto
principio della regressione
Eugenio Regazzini
Sia F la funzione di ripartizione, definita su ℝ2, di una coppia (X,Y) di caratteri posseduti da ciascuna unità di una certa popolazione statistica. Si considerano [...] generale, si può notare che l’insieme dei numeri aleatori con momento secondo finito può essere riguardato come uno spazio di Hilbert L2(Ω,✄,P), (Ω,✄,P) denotando lo spazio di Kolmogorov su cui si suppongono definiti i numeri aleatori in questione ...
Leggi Tutto
simmetria Distribuzione ordinata delle parti di un oggetto tale che si possa individuare un elemento geometrico (un punto, una linea, una superficie) rispetto al quale a ogni punto dell’oggetto posto da [...] di libertà. In particolare, in meccanica quantistica una simmetria, per le definizioni date sopra, deve trasformare lo spazio di Hilbert degli stati di un sistema in sé stesso, lasciando invariate le probabilità di transizione tra gli stati, cioè i ...
Leggi Tutto
Matematico e fisico siracusano (Siracusa 287 - ivi 212 a. C.). È stato uno dei più grandi matematici dell'antichità. Probabilmente allievo di Euclide, compì forse un viaggio in Egitto, studiando ad Alessandria; [...] ): dati due segmenti qualunque a, b, tali che a 〈 b, esiste un multiplo na di a per cui è na > b; il postulato è indipendente dai precedenti, nella sistemazione data da D. Hilbert all'assiomatica euclidea. ▭ Spirale di Archimede: v. spirale. ...
Leggi Tutto
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
risolubilita
risolubilità s. f. [der. di risolubile]. – Il fatto di essere risolubile, la condizione di ciò che può essere risolto: r. di un dubbio, di un problema, di un enigma; r. di un contratto, in diritto privato; r. di un problema geometrico...