teoremi di indecidibilità
Silvio Bozzi
In logica matematica, risultati che affermano che una data teoria formalizzata T non è decidibile, vale a dire non ammette un algoritmo in grado di stabilire in [...] di stabilire quando un polinomio a coefficienti interi ha o meno soluzione intera, rispondendo così al decimo problema posto da Hilbert nel 1900. Entrambi i risultati suddetti – assieme a quello di Gödel – non sono che gli esempi più sorprendenti di ...
Leggi Tutto
trasformazione Mutamento di forma, di aspetto, di struttura.
Biologia
Trasformazione batterica
Fenomeno che si verifica spontaneamente in natura quando le cellule si trovano in uno stadio, detto competente, [...] es. n1 e n2, e calcolare n1 trasformate su n2 punti, riducendo così il numero delle operazioni (➔ DFT). T. di Hilbert T. integrali definite da:
e inversamente:
T. integrale
T. lineare tra spazi di funzioni definita mediante un integrale. Esempi ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] di Jordan. Motivato da interessi di tipo filosofico per i fondamenti della geometria, Brouwer lavorò al V problema di Hilbert e all'approfondimento dei metodi topologici. Egli studiò con particolare attenzione i lavori di Arthur Schönflies (1853-1928 ...
Leggi Tutto
FUBINI (Fubini Ghiron), Guido
Marta Menghini
(Fubini Ghiron), Nacque a Venezia il 19 genn. 1879 da Lazzaro e da Zoraide Torre. Compì i suoi studi presso la Scuola normale superiore di Pisa, dove ebbe [...] , sia algebrici e aritmetici.
Con i suoi studi sulle funzioni automorfe estese risultati di H. Poincaré, F. Klein, D. Hilbert e altri costruendo le funzioni iper-fuchsiane e zeta-fuchsiane e le loro trasformazioni. In quello stesso periodo approfondì ...
Leggi Tutto
normale
normale [agg. Der. di norma] [LSF] Che segue la norma o una regola generale, anche nel senso di presentare caratteristiche medie (per es., obiettivo fotografico n. è quello che ha un angolo di [...] n. permette di calcolare immediatamente la distanza di un punto dalla retta). ◆ [ANM] Operatore n.: operatore lineare A definito su uno spazio di Hilbert tale che A∗A=AA∗, dove A∗ è l'aggiunto di A (v. algebre di operatori: I 95 a). ◆ [PRB] Valore n ...
Leggi Tutto
anello di polinomi
Luca Tomassini
Sia F un campo, ovvero un corpo commutativo. Si definisce anello di polinomi F[x] in una indeterminata x l’insieme dei simboli a0+a1x+...+anxn, dove n è un intero non [...] in nessun altro ideale proprio. Viceversa, ogni ideale massimale è generato da un polinomio irriducibile: l’estensione di quest’ultima proposizione al caso F[x1,...,xν] è la famosa Nullstellensatz di David Hilbert.
→ Invarianti, teoria degli ...
Leggi Tutto
Biologia
C. morfogenetico Area dell’embrione, o del primordio di un germoglio, dotata della capacità di dare origine a un determinato organo; per es., i c. morfogenetici dell’arto posteriore danno origine [...] sistema, funzioni della qn e pn, divengono nella teoria quantistica operatori su uno spazio vettoriale, detto spazio di Hilbert, i cui elementi corrispondono ai possibili stati del sistema fisico. Il problema generale della dinamica, che nella teoria ...
Leggi Tutto
SERIE (XXXI, p. 435; App. III, 11, p. 699)
Tullio Viola
1. Serie numeriche. - Sia
una serie a termini reali e positivi, le cui successive somme parziali indichiamo con
Ai criteri di convergenza e divergenza [...] . Non lo è neppure se X è uno spazio di Banach a infinite dimensioni, anzi neppure se X è semplicemente uno spazio di Hilbert.
Con l'uso della serie a termini reali, si può dare un semplice esempio di una siffatta eccezione. Sia la funzione:
definita ...
Leggi Tutto
Convessità
Arrigo Cellina
La convessità è un concetto della matematica elementare; le parole concavo e convesso fanno parte del linguaggio quotidiano. Eppure questo semplice concetto, unito ad altre [...] un caso molto particolare del seguente problema generale. Sono dati uno spazio di Hilbert H, un sottoinsieme convesso e chiuso K di H, una forma bilineare -groupes de contractions dans les espaces de Hilbert, Amsterdam-London, North-Holland, 1973.
...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti
Roger Cooke
Brian Griffith
La topologia degli insiemi di punti
La topologia generale o topologia degli insiemi [...] alcuni analisti pensavano già alle funzioni come punti di uno spazio metrico quale lo spazio di Hilbert, ossia l'insieme di tutte le successioni infinite di numeri reali xn tali che la serie ∑x2n converge con la distanza data dalla serie convergente ...
Leggi Tutto
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
risolubilita
risolubilità s. f. [der. di risolubile]. – Il fatto di essere risolubile, la condizione di ciò che può essere risolto: r. di un dubbio, di un problema, di un enigma; r. di un contratto, in diritto privato; r. di un problema geometrico...