Filosofia
Formulazione logicamente coerente di un insieme di definizioni, principi e leggi generali che consente di descrivere, interpretare, classificare, spiegare fenomeni di varia natura.
Le domande [...] sono, per es., le t. dei gruppi, quella degli anelli ecc.
Le dimostrazioni effettuate con il calcolo logico di Hilbert e Bernays (➔ logica) o con altri calcoli di tipo equivalente sono assai diverse da quelle che effettivamente un matematico adopera ...
Leggi Tutto
Matematico, fisico, astronomo e geodeta tedesco (Brunswick 1777 - Gottinga 1855), considerato uno dei più grandi genî scientifici di tutti i tempi. Taluni aneddoti su G. fanciullo testimoniano di una sua [...] . possiamo far risalire quel "primato matematico" dell'università di Gottinga in Germania, che si manterrà fino a David Hilbert. Nel 1809 pubblicò il grande trattato Theoria motus corporum coelestium in sectionibus conicis solem ambientium e nel 1813 ...
Leggi Tutto
BURALI FORTI, Cesare
Evandro Agazzi
Nacque ad Arezzo il 13 ag. 1861 da Cosimo e da Isoletta Guiducci. Dopo aver compiuto gli studi medi nel collegio militare di Firenze, s'iscrisse nel dicembre 1879 [...] stesso Cantor si era reso conto dell'esistenza di questa difficoltà nel 1895 e ne aveva scritto in una lettera ad Hilbert del 1896, ma nulla ne aveva pubblicato, cosicché è al B. che spetta il merito della pubblicazione della prima antinomia relativa ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Federigo Enriques
Giorgio Israel
La figura di Federigo Enriques occupa una posizione centrale nella storia della cultura italiana tra la fine dell’Ottocento e la Seconda guerra mondiale. Egli fu uno [...] geometria, accusava il purismo di aver subordinato i problemi ai metodi, i fini ai mezzi.
Per Enriques – come per Hilbert – il cuore della matematica è dato dai ‘grandi problemi’. Analisi e geometria non dovevano essere separate, ma anzi occorreva ...
Leggi Tutto
algebra non commutativa
Luca Tomassini
Sia F un campo, ovvero un corpo commutativo. Un insieme A è detto F-algebra (o algebra su F) se è uno spazio vettoriale sul campo F (per es., i campi ℚ, ℝ, ℂ dei [...] del caso in cui la dimensione di V sia infinita e dotato di una particolare topologia (avviato da David Hilbert) costituisce uno dei capitoli fondamentali dell’analisi del XX secolo. Esso ha condotto allo sviluppo del concetto di algebra normata ...
Leggi Tutto
scalare
scalare [agg. e s.m. Der. del lat. scalaris, nel signif. figurato "che varia secondo una scala graduata", da scala "scala"] [ALG] In contrapp. a vettoriale e tensoriale, di grandezza che è univocamente [...] v₂)+μ(v₁, v₃) (sesquilinearità). Uno spazio vettoriale infinitodimensionale dotato di prodotto s. e completo rispetto alla metrica indotta da esso è detto spazio di Hilbert. ◆ [RGR] Teorie s.-tensoriali: v. unificazione dei campi classici: VI 401 d. ...
Leggi Tutto
L’attività e l’operazione di rappresentare con figure, segni e simboli sensibili, o con processi vari, anche non materiali, oggetti o aspetti della realtà, fatti e valori astratti, e quanto viene così [...]
In meccanica quantistica, ogni realizzazione concreta degli enti matematici astratti, cioè vettori e operatori di uno spazio di Hilbert, per mezzo dei quali è descritto un sistema quantistico. Una particolare r. è individuata dalla scelta di una ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. L'intuizionismo di Brouwer
Anne L. Troelstra
L'intuizionismo di Brouwer
Nella dissertazione Over de Grondslagen der Wiskunde (I fondamenti della [...] , da un punto di vista intuizionista, tesi su argomenti quali la topologia, la teoria della misura, la teoria degli spazi di Hilbert, l'integrale di Radon e la geometria affine. Dopo il 1974 interessanti contributi sono stati forniti da Willem H.M ...
Leggi Tutto
CAPELLI, Alfredo
Eugenio Togliatti
Nacque a Milano il 5 ag. 1855 da Arminio e da Gioconda Manufardi. Compì gli studi universitari a Roma, ove ebbe a maestri L. Cremona, E. Beltrami, G. Battaglini. Conseguita [...] ; lo sviluppo per polari delle forme algebriche con più serie di variabili; una nuova dimostrazione del teorema di Hilbert sulla possibilità di esprimere infinite date funzioni razionali intere in n variabili come combinazioni lineari a coefficienti ...
Leggi Tutto
GAZZANIGA, Paolo
Luca Dell'Aglio
Nato a Soresina (Cremona) il 26 luglio 1853 da Pietro e Giulia Moschini, svolse a Pavia i suoi studi superiori, frequentando il collegio Ghislieri e laureandosi nel [...] E.E. Kummer, R. Dedekind e L. Kronecker e dalla sistematizzazione della teoria dei numeri algebrici operata da D. Hilbert a fine secolo. Nel pieno di questo sviluppo, di stampo prevalentemente tedesco, i testi del G. costituiscono, in fasi distinte ...
Leggi Tutto
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
risolubilita
risolubilità s. f. [der. di risolubile]. – Il fatto di essere risolubile, la condizione di ciò che può essere risolto: r. di un dubbio, di un problema, di un enigma; r. di un contratto, in diritto privato; r. di un problema geometrico...