WARING, Edward
Giovanni Vacca
Matematico inglese, nato a Shrewsbury nel 1734. Studiò nel Magdalen College di Cambridge. Nel 1762 ottenne, in quell'università, la cattedra di professore Lucasiano, che [...] che k potenze nme (dove k dipende solo da n). Questo teorema fu dimostrato soltanto recentemente (1909) da D. Hilbert (v. aritmetica, IV, p. 376).
Opere: Miscellanea Analytica de aequationibus Algebraicis et Curvarum Proprietatibus, Cambridge 1762 ...
Leggi Tutto
La grande scienza. Calcolo delle variazioni
Gianni Dal Maso
Calcolo delle variazioni
Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] in forma cartesiana ha una e una sola soluzione. La dimostrazione, dovuta a A. Haar (1927), utilizza il metodo di Hilbert per l'integrale di Dirichlet. L'estensione al caso n-dimensionale è stata ottenuta da M. Miranda (1965). Servendosi di metodi ...
Leggi Tutto
Matematico, nato a Palermo il 28 ottobre 1880, morto ivi il 7 settembre 1947. Studiò matematiche alla Scuola normale superiore di Pisa ed all'università di Palermo, dove si laureò nel 1902. Nel 1911 divenne [...] matematico. Antizermeliano convinto, egli dimostrò l'equivalenza tra il postulato di Zermelo ed il principio della funzione transfinita di Hilbert e, per evitare il postulato di Zermelo, creò nel 1913 la teoria delle successioni di insiemi, che fu ...
Leggi Tutto
spettro In varie discipline scientifiche e tecniche, termine frequentemente usato per indicare la composizione armonica di una grandezza variabile nel tempo.
Botanica
S. biologico Lo s. ottenuto dalle [...] per es., vale l’uguaglianza f(σ(T))=σ(f(T)) (teorema dell’applicazione spettrale). Se T è un operatore chiuso in uno spazio di Hilbert, l’insieme dei numeri complessi tali che l’immagine λI−T non è chiusa si dice s. essenziale, si indica con σε(T) ed ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] in rassegna i vari modi in cui esso era stato trattato in precedenza. Prima c'erano gli assiomi di Euclide e quelli di Hilbert, ora c'è la descrizione cartesiana (come la chiama lo stesso Weyl) che fa uso di coordinate e di una metrica indefinita, la ...
Leggi Tutto
Matematica
In algebra moderna, si chiama i. in un anello A un particolare tipo di sottoanello I di A tale che il prodotto ai di un qualsiasi elemento a di A per un qualsiasi elemento i di I sia ancora [...] (varietà algebriche come i. di polinomi ecc.). Il primo indirizzo ha origine con J.W.R. Dedekind, il secondo con D. Hilbert, mentre alla teoria astratta degli i. in un anello è legato il nome di E. Noether.
Psicologia
I. dell’Io Istanza dipendente ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana
Alberto Conte
Ciro Ciliberto
La scuola di geometria algebrica italiana
Gli inizi: Luigi Cremona e [...] di genere massimo ne mette in evidenza sia proprietà geometriche sia riposte caratteristiche algebriche. Tra queste, la 'funzione di Hilbert' dell'ideale dei polinomi che si annullano sulla curva C, ossia la dimensione hC(d), per ogni intero positivo ...
Leggi Tutto
gruppo di Lie
Luca Tomassini
Un gruppo G sul quale sia definita una struttura di varietà analitica tale che la mappa μ:(x,y)→xy−1 dal prodotto diretto G×G in G stesso sia analitica. In altre parole, [...] non conduce ad alcuna estensione della classe dei gruppi di Lie. È questo il contenuto del famoso quinto problema di Hilbert, risolto affermativamente da Andrew M. Gleason, Dean Montgomery e Leo Zippin: se G è una varietà topologica n-dimensionale e ...
Leggi Tutto
trasformata di Fourier
Luca Tomassini
Una trasformazione integrale che mappa una funzione a valori complessi f(x):ℝn→ℂ nella sua corrispondente trasformata di Fourier (detta anche funzione spettrale [...] 2=∣∣f(x)∣∣2: la trasformata di Fourier definisce un operatore lineare isometrico (e dunque sempre invertibile) dello spazio di Hilbert L2(ℝn,ℂ) delle funzioni a quadrato sommabile in sé. Dalla definizione è immediato verificare che la trasformata di ...
Leggi Tutto
Ramo della matematica che si occupa delle tematiche legate al calcolo delle variazioni, affrontando problemi nei quali non sono direttamente applicabili i metodi classici dell'analisi lineare.
Abstract [...] ’affrontare questo tipo di problemi fu dato all’inizio del secolo scorso dall’introduzione dei metodi diretti da parte di David Hilbert e poi, in Italia, da Leonida Tonelli. L’idea è che invece di passare attraverso la risoluzione dell’equazione di ...
Leggi Tutto
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
risolubilita
risolubilità s. f. [der. di risolubile]. – Il fatto di essere risolubile, la condizione di ciò che può essere risolto: r. di un dubbio, di un problema, di un enigma; r. di un contratto, in diritto privato; r. di un problema geometrico...