PEANO, Giuseppe
Clara Silvia Roero
PEANO, Giuseppe. – Nacque a Spinetta, nei pressi di Cuneo, il 27 agosto 1858, secondogenito di Bartolomeo e di Rosa Cavallo, proprietari terrieri.
Frequentò le scuole [...] geometria di posizione e della geometria metrica, che anticipava di una decina di anni il metodo assiomatico di David Hilbert.
Sui Mathematische Annalen pubblicò, nel gennaio del 1890, l’espressione analitica di una curva continua che riempie un’area ...
Leggi Tutto
La grande scienza. Automi e linguaggi formali
Dominique Perrin
Automi e linguaggi formali
La teoria degli automi e dei linguaggi formali ha lo scopo di descrivere le proprietà delle successioni di simboli. [...] motivati dalla necessità di dare un fondamento alla nozione di dimostrazione matematica sulla via inaugurata dai lavori di David Hilbert. Dopo la Seconda guerra mondiale, in seguito allo sviluppo dei computer e delle telecomunicazioni e del rinnovato ...
Leggi Tutto
Diritto
F. giuridico Concezione del diritto secondo la quale l’essenza del fenomeno giuridico consiste nella qualificazione da parte del diritto di atti, fatti e comportamenti che non sarebbero giuridici [...] puramente logico (➔ sistema). Primo e massimo esponente della scuola del f. matematico fu D. Hilbert, nel 1900-20. L’indirizzo formalista hilbertiano, anziché respingere (come fa l’intuizionismo) quelle parti della matematica classica che fanno uso ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] dimostra una notevole estensione del teorema con cui nel 1934 O. Gelfond e T. Schneider, indipendentemente, avevano risolto il settimo problema di Hilbert: provare che, se α, β sono algebrici, α è diverso da 0 e da 1 e β irrazionale, allora αβ è ...
Leggi Tutto
Linguistica
Forme o parole postulate Quelle forme o parole antiche, di solito contrassegnate con asterisco, che non sono documentate in alcun testo, ma di cui viene ragionevolmente supposta l’esistenza [...] moderna la differenziazione tra assiomi e p. è venuta meno a partire dalla fine del 19° sec., specialmente per opera di G. Frege, G. Peano, B. Russell e D. Hilbert. Oggi per assioma o p. si intende un enunciato primitivo di una teoria (➔ assioma). ...
Leggi Tutto
GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] notare che, nel caso delle superfici rigate (ossia contenenti infinite rette) di grado d dello spazio ordinario P3, calcolando il polinomio di Hilbert della curva dei punti doppi per n = d - 4 ne risultava un valore non positivo, e cioè - g, dove g è ...
Leggi Tutto
completo
complèto [agg. Der. del part. pass. completus del lat. complere "compiere sino alla fine" e quindi "che ha tutte le sue parti, intero"] [ALG] [ANM] Di ente non contenuto in altro ente più ampio; [...] cn tale che la norma del-l'elemento x-Σk ckxak per k da 1 a n risulta minore di ε; in uno spazio di Hilbert ciò equivale a dire che l'unico elemento ortogonale a tutti gli elementi del sistema è l'elemento nullo; v. anche equazioni integrali: II 479 ...
Leggi Tutto
Filosofia
Processo logico-discorsivo (dal gr. apodissi) in virtù del quale si arriva a garantire la validità di un enunciato.
La nozione di d. venne introdotta da Aristotele che la definì come quella forma [...] sui fondamenti della matematica fino al costituirsi di un espresso campo di ricerche, la teoria della d., elaborata da D. Hilbert e K. Gödel, che studia le capacità dimostrative dei sistemi formali, teoria che, dopo il fallimento del suo originale ...
Leggi Tutto
VITALI, Giuseppe
Giovanni Lampariello
Matematico, nato a Ravenna il 26 agosto 1875, morto a Bologna il 29 febbraio 1932. Professore di analisi infinitesimale prima a Padova e poi a Bologna.
Le sue più [...] insieme. Un'importante memoria del V. del 1927 tratta della geometria degli spazî delle funzioni di quadrato sommabile (di Hilbert). Lo sviluppo di questa geometria ha condotto il V. ad un'estensione della nozione di derivata covariante che presenta ...
Leggi Tutto
convessità Una figura (piana o solida) è detta convessa se, dati due suoi punti qualunque, il segmento che li congiunge appartiene interamente alla figura. Più in generale questa definizione si applica [...] ovali e ovaloidi) è un ramo, in pieno sviluppo, della matematica (a partire dagli studi di H. Minkowski, C. Carathéodory, D. Hilbert ecc.). Funzioni convesse Una funzione f è convessa in un dominio convesso C (per es., un intervallo) se per ogni x ...
Leggi Tutto
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
risolubilita
risolubilità s. f. [der. di risolubile]. – Il fatto di essere risolubile, la condizione di ciò che può essere risolto: r. di un dubbio, di un problema, di un enigma; r. di un contratto, in diritto privato; r. di un problema geometrico...