Introduzione, alcuni esempi classici. - Le "teorie di campo" si occupano di quei sistemi fisici il cui stato sia descritto assegnando il valore di una o più grandezze, dette "campi", in ciascun punto dello [...] teoria quantistica, operatori su uno spazio vettoriale, detto spazio di Hilbert, i cui elementi corrispondono ai possibili stati del sistema fisico. corrispondenti stati (autostati) nello spazio di Hilbert. La complessità matematica di questo problema ...
Leggi Tutto
Anatomia
Ammasso di cellule epiteliali alla cui attività si deve la formazione di un tessuto.
M. dell’unghia L’ammasso di cellule dello strato onicogeno che si osserva in corrispondenza della radice dell’unghia [...] spazio a r dimensioni. Quanto poi ad alcune generalizzazioni concettualmente più rilevanti, ricordiamo: la considerazione, dovuta a D. Hilbert, di m. di ordine infinito, la cui teoria è in stretta connessione con la teoria delle equazioni integrali ...
Leggi Tutto
sistema Nell’ambito scientifico, qualsiasi oggetto di studio che, pur essendo costituito da diversi elementi reciprocamente interconnessi e interagenti tra loro e con l’ambiente esterno, reagisce o evolve [...] sono quelli di G. Frege, di B. Russell e A.N. Whitehead, di J. Łukasiewicz, di D. Hilbert e W. Ackermann, di D. Hilbert e P. Bernays.
Teoria matematica che si costruisce astrattamente fissando alcuni concetti primitivi, e alcune proposizioni a essi ...
Leggi Tutto
In fisica, si dice di grandezza che ha la proprietà dell’osservabilità, è cioè suscettibile di essere misurata. Le variabili dinamiche di un sistema fisico che siano suscettibili di determinazione sperimentale [...] corrispondere un operatore  lineare, hermitiano e dotato di un insieme completo di autovettori, che agisce nello spazio di Hilbert, H, i cui vettori di lunghezza unitaria rappresentano gli stati del sistema (➔ meccanica). Il risultato di una singola ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Fisica e filosofia della scienza all'alba del XX secolo
Don Howard
Fisica e filosofia della scienza all'alba del XX secolo
Simbiosi disciplinare
La [...] l'esempio più completo, dopo quello di Einstein, fu Hermann Weyl (1885-1955). Profondamente influenzato dall'assiomatica di Hilbert e dalla fenomenologia di Edmund Husserl, Weyl fu non solo uno dei migliori fisici e matematici della sua generazione ...
Leggi Tutto
algebra
àlgebra [Lat. algebra, der. dell'arabo al-giabr propr. "restaurazione", e quindi "riduzione" (dapprima nel signif. medico-chirurgico, e poi in quello matematico), che compare la prima volta in [...] : II 685 f. ◆ [ALG] A. di operatori: insiemi di operatori costituenti un'a. e definiti su determinati spazi: a. di Banach, di Hilbert, a. C∗, ecc.: v. algebre di operatori. ◆ [ALG] A. C∗ di tipo I: v. algebre di operatori: I 95 e. ◆ [ALG] A ...
Leggi Tutto
fìsica matemàtica Disciplina scientifica che si propone di descrivere in termini matematici rigorosi i fenomeni fisici.
Abstract di approfondimento da Fisica matematica di Gianfausto Dell’Antonio (Enciclopedia [...] Hn come stato a n particelle, i fotoni di energia nL-1, e la conseguente descrizione dello spazio di Hilbert associato al campo elettromagnetico ‘quantizzato’ come somma diretta di spazi, parametrizzati da un indice n intero, ciascuno descritto in ...
Leggi Tutto
scalare
scalare [agg. e s.m. Der. del lat. scalaris, nel signif. figurato "che varia secondo una scala graduata", da scala "scala"] [ALG] In contrapp. a vettoriale e tensoriale, di grandezza che è univocamente [...] v₂)+μ(v₁, v₃) (sesquilinearità). Uno spazio vettoriale infinitodimensionale dotato di prodotto s. e completo rispetto alla metrica indotta da esso è detto spazio di Hilbert. ◆ [RGR] Teorie s.-tensoriali: v. unificazione dei campi classici: VI 401 d. ...
Leggi Tutto
L’attività e l’operazione di rappresentare con figure, segni e simboli sensibili, o con processi vari, anche non materiali, oggetti o aspetti della realtà, fatti e valori astratti, e quanto viene così [...]
In meccanica quantistica, ogni realizzazione concreta degli enti matematici astratti, cioè vettori e operatori di uno spazio di Hilbert, per mezzo dei quali è descritto un sistema quantistico. Una particolare r. è individuata dalla scelta di una ...
Leggi Tutto
creazione
creazióne [Der. del lat. creatio -onis "atto ed effetto del creare", dal part. pass. creatus di creare] [FSN] C. di particelle: processo nei cui prodotti finali sono presenti particelle che [...] . Poiché il numero di particelle non è conservato, un generico vettore di stato ha componenti su diversi sottospazi vettoriali (di Hilbert) a fissato numero di particelle. Gli operatori di c. e di distruzione fanno passare da uno stato a n particelle ...
Leggi Tutto
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
risolubilita
risolubilità s. f. [der. di risolubile]. – Il fatto di essere risolubile, la condizione di ciò che può essere risolto: r. di un dubbio, di un problema, di un enigma; r. di un contratto, in diritto privato; r. di un problema geometrico...