• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
54 risultati
Tutti i risultati [481]
Fisica [54]
Matematica [217]
Biografie [58]
Algebra [56]
Analisi matematica [49]
Storia della matematica [46]
Fisica matematica [33]
Filosofia [28]
Geometria [24]
Temi generali [26]

teorema di Hellmann-Feynman

Enciclopedia della Scienza e della Tecnica (2008)

teorema di Hellmann-Feynman Mauro Cappelli Risultato che descrive la relazione tra un operatore autoaggiunto T(λ) (assunto dipendente da un parametro λ) su uno spazio di Hilbert e i suoi autovalori, [...] naturalmente dipendenti essi stessi dal parametro λ. Esso mostra che per calcolare la derivata di un tale autovalore rispetto al parametro λ basta conoscere le autofunzioni di T(λ) (anch’esse dipendenti ... Leggi Tutto
CATEGORIA: MECCANICA QUANTISTICA

Littlewood John Edensor

Dizionario delle Scienze Fisiche (1996)

Littlewood John Edensor Littlewood 〈lìtluud〉 John Edensor [STF] (Rochester 1885 - Cambridge 1977) Prof. di matematica nell'univ. di Cambridge (1928). ◆ [ALG] Teorema di L.: teorema che ha confermato [...] e precisato la risposta affermativa data nel 1910 da D. Hilbert alla congettura di E. Waring secondo la quale per ogni intero k≥2 esiste un numero s(k) tale che qualunque intero n si può esprimere come somma di s(k) potenze k-esime di interi. ◆ [ANM] ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA

Heisenberg, Werner Karl

Enciclopedia on line

Heisenberg, Werner Karl Fisico tedesco (Würzburg 1901 - Monaco di Baviera 1976). Iniziò i suoi studi a Monaco sotto la guida di maestri come A. Sommerfeld e W. Wien. Decisivi per la sua maturazione scientifica furono, tra il [...] Franck all'università di Gottinga e, soprattutto, i contatti con il gruppo di fisici e matematici che faceva capo a D. Hilbert. Dopo il conseguimento del dottorato a Monaco (1923), H. iniziò un'intensa collaborazione con N. Bohr presso l'Istituto di ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: PRINCIPIO DI INDETERMINAZIONE – PRINCIPIO DI COMPLEMENTARITÀ – ELETTRODINAMICA QUANTISTICA – RADIAZIONE ELETTROMAGNETICA – MECCANICA QUANTISTICA
Mostra altri risultati Nascondi altri risultati su Heisenberg, Werner Karl (3)
Mostra Tutti

statistico, operatore

Enciclopedia on line

statistico, operatore In meccanica quantistica, operatore tramite il quale si attua (detto anche matrice s., o matrice, o densità) la descrizione di un sistema che si trovi in uno stato misto (➔ stato), [...] o che costituisca una parte di un sistema più grande) e che quindi non è descrivibile con un unico vettore dello spazio di Hilbert dei suoi stati, ma per mezzo di una miscela di stati puri: una sovrapposizione incoerente, nella quale sono dati i pesi ... Leggi Tutto
CATEGORIA: MECCANICA QUANTISTICA
TAGS: MECCANICA QUANTISTICA – OPERATORE HERMITIANO – SPAZIO DI HILBERT – AUTOVALORI

Quanti, teoria dei

Enciclopedia del Novecento (1980)

Quanti, teoria dei GGian Carlo Wick Gian Carlo Wick Meccanica quantistica, di Gian Carlo Wick Elettrodinamica quantistica, di Gian Carlo Wick Meccanica quantistica SOMMARIO: 1. Introduzione: a) il [...] (più generalmente iℏ ῼψ/ῼt = Hψ descrive appunto il modo in cui il vettore ‛ varia col tempo. In altre parole, lo spazio di Hilbert viene concepito come lo spazio delle funzioni ψ(q) e la funzione d'onda ψ(q; t) viene pensata come una famiglia di ... Leggi Tutto
TAGS: PRINCIPIO DI INDETERMINAZIONE DI HEISENBERG – TEORIA QUANTISTICA DEI CAMPI – PRINCIPIO DI SOVRAPPOSIZIONE – DISTRIBUZIONE DI PROBABILITÀ – ELETTRODINAMICA QUANTISTICA

Pogorelov, Aleksej Vasil´evič

Enciclopedia on line

Fisico-matematico (Koroca, oblast´ di Belgorod, 1919 - Mosca 2002); dal 1947 al 1959 prof. all'univ. di Char´kov e dal 1960 presso il dipartimento di geometria all'Accademia delle scienze di Ukraina. Le [...] cilindriche sottoposte a forze esterne di vario tipo, ecc.). Tra le opere: Vnešnjaja geometrija vypuklych poverchnostej ("Geometria estrinseca delle superfici convesse", 1969), Četvërtaja problema Gil´berta ("Il quarto problema di Hilbert", 1974). ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: GEOMETRIA DIFFERENZIALE – CHAR´KOV

Uryson Pavel Samuilovic

Dizionario delle Scienze Fisiche (1996)

Uryson Pavel Samuilovic Uryson (o Urysohn) 〈urïsòn〉 Pavel Samuilovič [STF] (Odessa 1898 - Batz, Loira, 1924) Libero docente di matematica nell'univ. di Mosca (1921). ◆ [ALG] Lemma di U.: afferma che [...] che f(x)=0 se x∈A, f(x)=1 se x∈B, 0≤f(x)≤1 se x∉A⋃B. ◆ [ANM] Teorema di U.: ogni spazio topologico normale, provvisto di una base numerabile di aperti, è omeomorfo a un sottospazio di uno spazio di Hilbert (e pertanto, in partic., è metrizzabile). ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su Uryson Pavel Samuilovic (2)
Mostra Tutti

spazio

Enciclopedia on line

spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] anche in fisica, e in particolare in meccanica quantistica, dove gli stati di un sistema sono descritti da vettori di uno s. di Hilbert. S. metrico (o distanziale). S. nel quale è definita una distanza d tra due qualunque elementi x, y tale che d(x ... Leggi Tutto
CATEGORIA: CORPI CELESTI – COSMOLOGIA – DISCIPLINE STRUMENTI E TECNICHE DI RICERCA – TEMI GENERALI – ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – GEOGRAFIA FISICA – GEOMETRIA – DISCIPLINE – DIRITTO COMUNITARIO E DIRITTO INTERNAZIONALE – STORIA E FILOSOFIA DEL DIRITTO – DOTTRINE TEORIE E CONCETTI – FILOSOFIA DEL DIRITTO – METAFISICA – POLITOLOGIA – TRASPORTI AEREI
TAGS: COMPLEMENTARE DI UN INSIEME – POSTULATO DELLE PARALLELE – CAMPO MAGNETICO TERRESTRE – OSSERVATORIO ASTRONOMICO – CORRISPONDENZA BIUNIVOCA
Mostra altri risultati Nascondi altri risultati su spazio (10)
Mostra Tutti

operatore

Enciclopedia on line

Biologia In genetica, tratto di DNA che fa parte di un operone e condiziona la trascrizione dei geni strutturali immediatamente adiacenti (➔ operone). Filosofia In filosofia analitica, un’espressione [...] hanno portato a una rigorosa definizione e specializzazione delle algebre degli operatori. Lo studio degli o. lineari su spazi di Hilbert e delle algebre da essi generate è stato uno dei campi di ricerca più attivi negli anni 1990. Si sono infatti ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – GENETICA – MESTIERI E PROFESSIONI – FISICA MATEMATICA – MECCANICA QUANTISTICA – ANALISI MATEMATICA – LOGICA MATEMATICA – FILOSOFIA DEL LINGUAGGIO – METAFISICA
TAGS: QUANTIFICATORE ESISTENZIALE – GEOMETRIA DIFFERENZIALE – MECCANICA QUANTISTICA – SISTEMI DIFFERENZIALI – ANELLO DEI POLINOMI
Mostra altri risultati Nascondi altri risultati su operatore (2)
Mostra Tutti

La grande scienza. Cronologia scientifica: 1951-1960

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1951-1960 1951-1960 1951 Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] ai contributi di A.M. Gleason, di D. Montgomery e di L. Zippin viene risolta una parte del V problema di Hilbert: ogni gruppo topologico localmente euclideo è un gruppo di Lie. Sulle varietà algebriche reali. John F. Nash dimostra che ogni varietà ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA
1 2 3 4 5 6
Vocabolario
hilbertiano
hilbertiano 〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
risolubilità
risolubilita risolubilità s. f. [der. di risolubile]. – Il fatto di essere risolubile, la condizione di ciò che può essere risolto: r. di un dubbio, di un problema, di un enigma; r. di un contratto, in diritto privato; r. di un problema geometrico...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali