algebre di von Neumann
Luca Tomassini
Un’algebra di von Neumann C è una sotto-algebra involutiva dell’algebra B(ℋ) degli operatori lineari limitati (ovvero continui) su uno spazio di Hilbert ℋ (con [...] prodotto scalare (∙,∙) che induce una norma ∣∣∙∣∣) verificante una delle proprietà che seguono: (a) contiene l’operatore identità ed è un insieme chiuso rispetto alla convergenza forte: sia Aν una successione ...
Leggi Tutto
L'Ottocento: matematica. Teoria degli invarianti
Leo Corry
Teoria degli invarianti
L'algebra del XIX sec. ebbe uno sviluppo intenso che coprì numerosi domini. Nuove entità matematiche come gruppi, anelli [...] e molto utile, deducibile dalla precedente è
[11] b2(ca)2+c2(ab)2−a2(bc)2=2bc(ab)(ac).
Gordan e Hilbert
Dopo il 1860 i risultati più importanti nella teoria degli invarianti furono ottenuti grazie a manipolazioni simboliche di questo tipo. L'esempio ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Algebra
Claudio Procesi
Algebra
Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] è il classico trattato di Heinrich Martin Weber anche se per la teoria degli invarianti, per i lavori di David Hilbert, per i fondamenti della teoria dei gruppi di Lie e della teoria delle rappresentazioni, è necessario un discorso più approfondito ...
Leggi Tutto
Littlewood John Edensor
Littlewood 〈lìtluud〉 John Edensor [STF] (Rochester 1885 - Cambridge 1977) Prof. di matematica nell'univ. di Cambridge (1928). ◆ [ALG] Teorema di L.: teorema che ha confermato [...] e precisato la risposta affermativa data nel 1910 da D. Hilbert alla congettura di E. Waring secondo la quale per ogni intero k≥2 esiste un numero s(k) tale che qualunque intero n si può esprimere come somma di s(k) potenze k-esime di interi. ◆ [ANM] ...
Leggi Tutto
(XIV, p. 132; App. III, i, p. 564; IV, i, p. 714; v. equazioni differenziali, App. V, ii, p. 131).
Il concetto generale di e. in matematica è trattato nella voce equazioni del vol. XIV dell'Enciclopedia [...] il vincolo f(x, y)=φ(x, y) per (x, y) ∈ ∙Ω, dove φ è una funzione continua assegnata. Il metodo di Hilbert per l'elettrostatica è applicabile a questo nuovo integrale doppio, ma fu necessario attendere la pubblicazione di un articolo di T. Rado, nel ...
Leggi Tutto
autoaggiunto
autoaggiunto [agg. Comp. di auto- e aggiunto] [ANM] Di operatore lineare che è identico al suo operatore aggiunto (anche come s.m.); il termine è sinon. di hermitiano (←) per operatori definiti [...] su spazi finito-dimensionali, mentre non lo è se lo spazio è infinito-dimensionale; precis., dato uno spazio di Hilbert H, l'a. è un operatore lineare A per cui è (a, Ab)=(Aa, b) con a∈H, b∈H. ◆ [ALG] Elemento a., o hermitiano, di un'algebra di ...
Leggi Tutto
In matematica, si dice di struttura nella quale sia definita un’operazione che non è commutativa (➔ commutativa, proprietà). Tali strutture hanno assunto un ruolo importante nella caratterizzazione della [...] quelle di algebre n. a essi associate. Esempi di algebre n. sono le algebre di operatori su uno spazio di Hilbert a dimensione finita. In generale, l’associazione a uno spazio funzionale di un’algebra si realizza dimostrando che le proprietà di ...
Leggi Tutto
Selezione di 7 problemi matematici proposti nel 2000 dal Clay Mathematics Institute (CMI) di Cambridge, Massachusetts, che ha stanziato per la risoluzione di ognuno di essi un premio di 1 milione di dollari. [...] che hanno resistito ai tentativi di soluzione nel corso degli anni e dovrebbero servire da guida per i matematici, così come fecero i problemi proposti da D. Hilbert nel 1900. Tra i 7 problemi solo l’ipotesi di Riemann si trovava tra i 23 problemi di ...
Leggi Tutto
semidefinito
semidefinito [Comp. di semi- e definito] [ALG] Matrice s. positiva: matrice A dotata di autovalori λi≥0 per ogni i; ha la proprietà che per ogni x∈Rn si ha (x, Ax)≥0; il segno di uguaglianza, [...] però, può essere realizzato anche da vettori x non nulli, e ciò la distingue da una matrice definita positiva. ◆ [ANM] Operatore s. positivo: operatore A su uno spazio di Hilbert H per cui valga (x, Ax)≥0 per ogni elemento x∈H. ...
Leggi Tutto
anello
Luca Tomassini
La nozione di anello esprime in forma astratta le analogie presenti, per es., tra la manipolazione dei numeri interi relativi e quella dei polinomi. Il suo studio è stato decisivo [...] la sua origine nei lavori della scuola tedesca del XIX sec., principalmente di Ernst Kummer, Leopold Kronecker, Richard Dedekind e David Hilbert. Un anello è un insieme A munito di due leggi di composizione interne (x,y)→x+y e (x,y)→xy, chiamate ...
Leggi Tutto
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
risolubilita
risolubilità s. f. [der. di risolubile]. – Il fatto di essere risolubile, la condizione di ciò che può essere risolto: r. di un dubbio, di un problema, di un enigma; r. di un contratto, in diritto privato; r. di un problema geometrico...