• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
481 risultati
Tutti i risultati [481]
Matematica [217]
Biografie [58]
Algebra [56]
Fisica [54]
Analisi matematica [49]
Storia della matematica [46]
Fisica matematica [33]
Filosofia [28]
Geometria [24]
Temi generali [26]

ideale

Enciclopedia on line

Matematica In algebra moderna, si chiama i. in un anello A un particolare tipo di sottoanello I di A tale che il prodotto ai di un qualsiasi elemento a di A per un qualsiasi elemento i di I sia ancora [...] (varietà algebriche come i. di polinomi ecc.). Il primo indirizzo ha origine con J.W.R. Dedekind, il secondo con D. Hilbert, mentre alla teoria astratta degli i. in un anello è legato il nome di E. Noether. Psicologia I. dell’Io Istanza dipendente ... Leggi Tutto
CATEGORIA: ALGEBRA – BIOGRAFIE – PSICANALISI – PSICOLOGIA COGNITIVA – PSICOLOGIA DELL ETA EVOLUTIVA – PSICOLOGIA GENERALE – PSICOLOGIA SOCIALE – PSICOLOGIA SPERIMENTALE – PSICOMETRIA – PSICOTERAPIA – STORIA DELLA PSICOLOGIA E DELLA PSICANALISI – TEMI GENERALI
TAGS: MECCANISMO DI DIFESA – ANELLO DEI POLINOMI – GEOMETRIA ALGEBRICA – COMPLESSO EDIPICO – NUMERI INTERI
Mostra altri risultati Nascondi altri risultati su ideale (2)
Mostra Tutti

OVALE e OVALOIDE

Enciclopedia Italiana (1935)

OVALE e OVALOIDE Enrico Bompiani . 1. Definizione. - Il triangolo, il quadrato, il cerchio dànno altrettanti esempî di regioni limitate del piano, tali che ogni segmento, il quale ne congiunga due punti, [...] Si connettono a questa proprietà le ricerche sulla deformabilità di un'ovaloide: H. Liebmann (1899), e poi D. Hilbert e W. Blaschke, hanno dimostrato che un'ovaloide è indeformabile nel senso che, se due ovaloidi sono rappresentabili isometricamente ... Leggi Tutto

Lie, gruppo di

Enciclopedia della Matematica (2013)

Lie, gruppo di Lie, gruppo di varietà differenziabile che soddisfa gli assiomi di → gruppo, compatibilmente con la struttura di varietà differenziabile, vale a dire in modo che le operazioni di gruppo [...] delle condizioni minime su tali funzioni perché il gruppo continuo sia un gruppo di Lie è uno dei 23 problemi posti da Hilbert nel 1900 (il quinto per l’esattezza): problema risolto da J. von Neumann (1930) e da D. Montgomery e L. Zippin e ... Leggi Tutto
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – VARIETÀ DIFFERENZIABILE – GRUPPO SPECIALE LINEARE – EQUAZIONE DIFFERENZIALE – CALCOLO DIFFERENZIALE
Mostra altri risultati Nascondi altri risultati su Lie, gruppo di (1)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana Alberto Conte Ciro Ciliberto La scuola di geometria algebrica italiana Gli inizi: Luigi Cremona e [...] di genere massimo ne mette in evidenza sia proprietà geometriche sia riposte caratteristiche algebriche. Tra queste, la 'funzione di Hilbert' dell'ideale dei polinomi che si annullano sulla curva C, ossia la dimensione hC(d), per ogni intero positivo ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

funzione calcolabile

Enciclopedia della Matematica (2017)

funzione calcolabile funzione calcolabile funzione per la quale esiste una procedura di calcolo (→ algoritmo) che permette di determinarne, in un numero finito di passi, il valore in corrispondenza di [...] tuttavia casi in cui la funzione è intrinsecamente non calcolabile. Per esempio, tra i 23 problemi posti da Hilbert (→ Hilbert, problemi di), il decimo chiede di definire un algoritmo per stabilire se una qualunque equazione diofantea (equazione cioè ... Leggi Tutto
TAGS: INSIEME DEI NUMERI NATURALI – PRINCIPIO DEL TERZO ESCLUSO – INSIEME DI DEFINIZIONE – MACCHINA DI → TURING – FUNZIONE ARITMETICA

trasformata di Fourier

Enciclopedia della Scienza e della Tecnica (2008)

trasformata di Fourier Luca Tomassini Una trasformazione integrale che mappa una funzione a valori complessi f(x):ℝn→ℂ nella sua corrispondente trasformata di Fourier (detta anche funzione spettrale [...] 2=∣∣f(x)∣∣2: la trasformata di Fourier definisce un operatore lineare isometrico (e dunque sempre invertibile) dello spazio di Hilbert L2(ℝn,ℂ) delle funzioni a quadrato sommabile in sé. Dalla definizione è immediato verificare che la trasformata di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONI A QUADRATO SOMMABILE – OPERATORE LINEARE CONTINUO – EQUAZIONI DIFFERENZIALI – FUNZIONI GENERALIZZATE – EQUAZIONI ALGEBRICHE
Mostra altri risultati Nascondi altri risultati su trasformata di Fourier (1)
Mostra Tutti

analisi non lineare

Enciclopedia on line

Ramo della matematica che si occupa delle tematiche legate al calcolo delle variazioni, affrontando problemi nei quali non sono direttamente applicabili i metodi classici dell'analisi lineare. Abstract [...] ’affrontare questo tipo di problemi fu dato all’inizio del secolo scorso dall’introduzione dei metodi diretti da parte di David Hilbert e poi, in Italia, da Leonida Tonelli. L’idea è che invece di passare attraverso la risoluzione dell’equazione di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DIFFERENZIALE – PROBLEMA ISOPERIMETRICO – ANALISI MATEMATICA

Simmetrie e invarianze

Enciclopedia del Novecento (1982)

Simmetrie e invarianze LLuigi A. Radicati di Brozolo di Luigi A. Radicati di Brozolo SOMMARIO: 1. Introduzione e brevi cenni storici. □ 2. La struttura dello spazio-tempo assoluto. □ 3. Il ruolo della [...] anche rispetto all'inversione del tempo, T:t???14???−t, x???14???x. Questa operazione è rappresentata sullo spazio di Hilbert da un operatore antiunitario V, cioè tale da trasformare il prodotto scalare di due vettori ϕ, ψ nel complesso coniugato ... Leggi Tutto
TAGS: PRINCIPIO DI ESCLUSIONE DI PAULI – EQUAZIONI ALLE DERIVATE PARZIALI – ROTTURA SPONTANEA DI SIMMETRIA – FISICA NUCLEARE E SUBNUCLEARE – RAPPRESENTAZIONE IRRIDUCIBILE

ortogonale

Dizionario delle Scienze Fisiche (1996)

ortogonale ortogonale [Der. del lat. orthogonus, dal gr. orthog✄ònios "ad angolo retto", comp. di orthós "dritto" e g✄onía "angolo"] [ALG] Qualifica di ciascuno di due enti che formano tra loro un angolo [...] . oltre). ◆ [ALG] Fibrato o.: v. fibrati: II 571 b. ◆ [ANM] Funzioni o.: due funzioni f(x) e g(x) di uno spazio di Hilbert dotato di prodotto scalare (f,g) quando risulti (f,g)=0. ◆ [ALG] Gruppo o.: il gruppo delle matrici quadrate o. (v. oltre) a ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

spazio Lp(Ω)

Enciclopedia della Matematica (2013)

spazio Lp (O) spazio Lp(Ω) con Ω sottoinsieme misurabile di Rn, spazio vettoriale delle funzioni ƒ misurabili secondo Lebesgue per le quali l’integrale Se p ≥ 1, lo spazio è normato, con norma e completo [...] essi si dicono esponenti coniugati; per p < ∞ il duale di Lp(Ω) è Lp′ (Ω), e quindi se 1 < p < ∞ gli spazi Lp sono riflessivi. Se g ∈ Lp′, risulta (→ Hölder, disuguaglianza di). In particolare, lo spazio L2(Ω) è uno spazio di → Hilbert. ... Leggi Tutto
TAGS: DISUGUAGLIANZA TRIANGOLARE – INSIEME DI MISURA NULLA – FUNZIONI Ƒ MISURABILI – CLASSI DI EQUIVALENZA – SPAZIO DI → HILBERT
1 2 3 4 5 6 7 8 ... 31 ... 49
Vocabolario
hilbertiano
hilbertiano 〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
risolubilità
risolubilita risolubilità s. f. [der. di risolubile]. – Il fatto di essere risolubile, la condizione di ciò che può essere risolto: r. di un dubbio, di un problema, di un enigma; r. di un contratto, in diritto privato; r. di un problema geometrico...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali