La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] non riuscirono a trovare il modo di introdurre una topologia nell'insieme di tutte le valutazioni associate a un assomigliasse molto a quella che associa a uno spazio il proprio gruppo di coomologia. Vista sotto questa luce la K-teoria appare come ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] secondo spazio G/H, usando G come spazio di partenza e H come gruppo.
Questi spazi si dicono 'omogenei'. Tale idea permette il confronto tra i libro di Steenrod, oltre a chiarire i fondamenti topologici della teoria dei fibrati, presentava la teoria ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La teoria della misura
Maurice Sion
La teoria della misura
Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] si affermò definitivamente nella prima metà del XX secolo. Uno spazio topologico è un insieme su cui è definita una struttura con la Phillips. Negli anni Sessanta fu estesa ulteriormente ai gruppi e ai semigruppi. Di particolare interesse è stata la ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] (1887-1948) e Vietoris a Vienna.
Nel lavoro di Mayer del 1929, Über abstrakte Topologie (Sulla topologia astratta), viene definito un sistema di assiomi per i gruppi di omologia su cui si basa un altro importante contributo che trae origine dall ...
Leggi Tutto
DE GIORGI, Ennio
Enrico Moriconi
Nacque l’8 febbraio del 1928 a Lecce figlio di Nicola e di Stefania Scopinich.
La madre proveniva da una famiglia di navigatori di Lussino, mentre il padre era insegnante [...] International, associazione di cui fondò il Gruppo pisano, cogliendo ogni occasione per illustrare , stabilisce che una successione {fk(x)} di funzioni definite su uno spazio topologico X, e a valori reali, o reali estesi, è Γ-convergente verso ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Algebra
Claudio Procesi
Algebra
Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] di equazioni differenziali.
Il punto di vista omologico nasce da un'idea generale che individua nei gruppi di omologia invarianti funtoriali degli spazi topologici e da alcune metodologie algebriche come i complessi di catene e i funtori derivati. Il ...
Leggi Tutto
insieme
insième [Der. del lat. insemel, forma corrotta di insimul, comp. di in- e simul "insieme"] [ALG] Secondo la definizione di G. Cantor, ogni raccolta (aggregato, famiglia) di enti distinti, detti [...] . dei tempi: v. sistemi, teoria dei: V 316 d. ◆ I. denso: v. spazio topologico: V 468 f. ◆ I. d’insuccesso: v. affidabilità: I 85 f. ◆ I. di e simili, i. dotato di una struttura algebrica (gruppo, reticolo, algebra, ecc.) i cui elementi si ottengano ...
Leggi Tutto
stella
stélla [Lat. stella] [ASF] Nome generico dei corpi celesti, di forma per lo più sferica, costituiti da enormi masse di gas a temperatura molto elevata (che per questo emettono luce), tenuti insieme [...] regolare) stellato. (c) Nella topologia, la totalità degli elementi di un complesso topologico incidenti su un elemento x del in astronomia: II 218 d. ◆ [ASF] S. standard: gruppo di s. di riferimento per i sistemi fotometrici di magnitudini: v. ...
Leggi Tutto
continuo 1
contìnuo1 [agg. Der. del lat. continuus, da continere "tenere unito", comp. di cum "insieme" e tenere, e quindi "non interrotto"] [ALG] Applicazione c.: applicazione definita su uno spazio [...] A a valori in un altro spazio topologico A' che fa corrispondere a punti "vicini" di A punti "vicini" di A'; precis., se al punto P di A definite su spazi più generali. ◆ [ALG] Gruppo c.: gruppo i cui elementi dipendono da parametri arbitrari (o ...
Leggi Tutto
quaternione
quaternióne [Der. del lat. quaternio -onis, da quaterni (→ quaterna)] [ALG] Numeri che rappresentano una generalizzazione dei numeri complessi; il generico q di essi si rappresenta come q=a+bi+cj+dk, [...] attenzione per questioni sia prettamente algebriche che topologico-differenziali; nell'ambito fisico, è da dei q. (matrici di Sylvester), data sopra. ◆ [ALG] Gruppo dei q.: gruppo non commutativo, di 8 elementi, costituito dalle quattro unità dei q. ...
Leggi Tutto
complèsso2 s. m. [dal lat. complexus -us, der. di complecti (cfr. la voce prec.); il sign. psicanalitico è un calco del ted. Komplex]. – 1. Il tutto, l’insieme, in quanto costituito di più parti o elementi: un c. di persone, di cose; la cittadinanza...
connessione
connessióne s. f. [dal lat. connexio -onis, der. di connexus, part. pass. di connectĕre «connettere»]. – 1. L’essere connesso, intima unione fra due o più cose; per lo più fig., legame di stretta relazione e interdipendenza tra...