• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
99 risultati
Tutti i risultati [99]
Matematica [53]
Algebra [26]
Fisica [12]
Geometria [11]
Fisica matematica [10]
Analisi matematica [8]
Biologia [8]
Temi generali [7]
Diritto [6]
Medicina [5]

Numeri, teoria dei

Enciclopedia della Scienza e della Tecnica (2007)

Numeri, teoria dei Larry Joel Goldstein La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri …, −4, −3, −2, [...] al grado di F. Infatti, se il grado di F è n e se il gruppo quoziente OF/pi ha fi elementi allora [18] e1f1+e2f2+…+etft=n. Nel caso operatori di Hecke. Questi formano un anello commutativo e possono essere diagonalizzati simultaneamente, sicché ℳk ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – DOMINIO A FATTORIZZAZIONE UNICA – LEGGE DI RECIPROCITÀ QUADRATICA – CHARLES DE LA VALLÉE POUSSIN – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Numeri, teoria dei (4)
Mostra Tutti

La grande scienza. Fisica matematica: recenti sviluppi

Storia della Scienza (2003)

La grande scienza. Fisica matematica: recenti sviluppi Gianfausto Dell'Antonio Fisica matematica: recenti sviluppi La fisica matematica si può definire come la disciplina scientifica che si propone [...] Mills nei primi anni Sessanta, del principio dell'invarianza di gauge al caso di un gruppo G non commutativo; Yang e Mills si interessarono particolarmente al gruppo SU(2) composto da tutte le matrici unitarie di ordine due con determinante uguale a ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] dalle classi di coomologia di grado pari. È questo un anello commutativo con unità 1∈H0(V). Per comprendere come la struttura Γ) è l'insieme dei lati di Γ, si consideri la cella Il gruppo (finito) Aut(Γ) degli automorfismi di Γ agisce su cΓ e si ... Leggi Tutto
CATEGORIA: GEOMETRIA

La grande scienza. Automi e linguaggi formali

Storia della Scienza (2003)

La grande scienza. Automi e linguaggi formali Dominique Perrin Automi e linguaggi formali La teoria degli automi e dei linguaggi formali ha lo scopo di descrivere le proprietà delle successioni di simboli. [...] ottenere componendo automi di due tipi: (1) 'automi a gruppo', nei quali le azioni dei simboli sugli stati sono biunivoche; k di w. Un semigruppo è idempotente se x=x2 e commutativo se xy=yx, identicamente. Per un importante teorema di McNaughton, ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA – CIBERNETICA E INTELLIGENZA ARTIFICIALE

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] X) assomigliasse molto a quella che associa a uno spazio il proprio gruppo di coomologia. Vista sotto questa luce la K-teoria appare come fece il grande passo di partire da un anello commutativo qualunque e definire uno spazio topologico a esso ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA

Automi e linguaggi formali

Enciclopedia della Scienza e della Tecnica (2007)

Automi e linguaggi formali Dominique Perrin La teoria degli automi e dei linguaggi formali ha lo scopo di descrivere le proprietà delle successioni di simboli. Tali successioni si presentano in situazioni [...] solo se il suo monoide sintattico è localmente idempotente e commutativo.+1 Automi e logica Si deve a Richard Büchi l' una parola su ai e a_i alla corrispondente forma ridotta nel gruppo libero sui simboli a_i si può realizzare applicando le regole ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: LINGUAGGIO LIBERO DAL CONTESTO – SISTEMI DI EQUAZIONI LINEARI – LINGUAGGIO DI PROGRAMMAZIONE – RICORSIVAMENTE ENUMERABILE – RELAZIONE DI EQUIVALENZA

Matematica: problemi aperti

Enciclopedia della Scienza e della Tecnica (2007)

Matematica: problemi aperti Claudio Procesi Prima di parlare dei problemi aperti nella matematica è bene riflettere su quelli che ne hanno segnato la storia passata. Sono infatti proprio questi che [...] allora la seguente: provare che, per ogni gruppo di Lie compatto G gruppo di gauge, esiste una teoria quantistica delle dei corpi, chiede se dato un numero primo p esista un polinomio non commutativo f(x,y) che non sia centrale per le matrici p×p ma ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – CONGETTURA DI BIRCH E SWINNERTON-DYER – INTERNATIONAL MATHEMATICAL UNION – METODO DI ELIMINAZIONE DI GAUSS – FUNZIONE DI VARIABILE COMPLESSA
Mostra altri risultati Nascondi altri risultati su Matematica: problemi aperti (14)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Algebra

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Algebra Claudio Procesi Algebra Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] parte uno sviluppo di quella esposta negli Eléments de mathématique nei volumi dedicati appunto all'algebra, all'algebra commutativa e ai gruppi e alle algebre di Lie. Se apriamo ora un volume delle "Mathematical reviews" possiamo vedere come oggi l ... Leggi Tutto
CATEGORIA: ALGEBRA

Invarianti, Teoria degli

Enciclopedia della Scienza e della Tecnica (2007)

Invarianti, Teoria degli Claudio Procesi La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] . Per decomporre lo spazio dei tensori è infatti necessario determinare gli operatori lineari su tale spazio che commutano con l'azione del gruppo. D'altra parte lo spazio degli operatori lineari su V⊗m può essere canonicamente identificato con lo ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: DOMINIO A FATTORIZZAZIONE UNICA – TEORIA DELLE RAPPRESENTAZIONI – TEOREMA DI CAYLEY-HAMILTON – CORRISPONDENZA BIUNIVOCA – SEGNO DELLA PERMUTAZIONE
Mostra altri risultati Nascondi altri risultati su Invarianti, Teoria degli (6)
Mostra Tutti

campo

Enciclopedia della Matematica (2013)

campo campo struttura algebrica costituita da un insieme K* dotato di due operazioni binarie interne + e · : K × K* → K*, dette rispettivamente addizione e moltiplicazione, tali che: K* è un gruppo abeliano [...] (cioè commutativo) rispetto all’addizione e l’insieme K**, ottenuto da K* escludendo l’elemento neutro dell’addizione, è un gruppo abeliano rispetto alla moltiplicazione (esso viene pertanto detto il gruppo moltiplicativo del campo K*); si richiede ... Leggi Tutto
TAGS: INVERSO MOLTIPLICATIVO – EQUAZIONE POLINOMIALE – ANALISI NON STANDARD – STRUTTURA ALGEBRICA – TEORIA DI → GALOIS
Mostra altri risultati Nascondi altri risultati su campo (3)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 10
Vocabolario
commutativo
commutativo agg. [der. di commutare]. – 1. Che commuta o è relativo al commutare: giustizia c., che consiste nel rendere il corrispondente di quello che si riceve. In diritto, contratto c., quello in cui le prestazioni reciproche sono stabilite...
gruppo
gruppo s. m. [dal germ. kruppa]. – 1. Insieme di più cose o persone, distinte l’una dall’altra, ma riunite insieme in modo da formare un tutto: un g. di case, di persone; un g. di stelle; un g. d’aziende; g. familiare, costituito dai membri...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali