• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
11 risultati
Tutti i risultati [99]
Geometria [11]
Matematica [53]
Algebra [26]
Fisica [12]
Fisica matematica [10]
Analisi matematica [8]
Biologia [8]
Temi generali [7]
Diritto [6]
Medicina [5]

topologia

Enciclopedia on line

Matematica Lo studio delle proprietà geometriche delle figure che non dipendono dalla nozione di misura, ma sono legate a problemi di deformazione delle figure stesse. Proprietà topologiche La t., che [...] sviluppo della t. algebrica è la teoria dell’omologia a coefficienti appartenenti a un anello o a un gruppo commutativo (anziché all’anello degli interi). T. differenziale La t. differenziale si avvale dei metodi del calcolo differenziale. Essa ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: RELAZIONE DI EQUIVALENZA – VARIETÀ DIFFERENZIABILE – COMPLESSO SIMPLICIALE – CALCOLO DIFFERENZIALE – STRUTTURA TOPOLOGICA
Mostra altri risultati Nascondi altri risultati su topologia (6)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] affini e le applicazioni lineari affini. Si arriva quindi allo studio delle matrici, considerate in particolare su un gruppo commutativo o su un anello e in relazione alle applicazioni lineari. Si discutono le matrici quadrate, diagonali, monomiali e ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

spazio

Enciclopedia on line

spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] punti di una curva o di una varietà algebrica; studio di gruppi (finiti) di collineazioni e di omografie; studio dei k- quale V è un ‘modulo’; la somma è cioè associativa e commutativa, esiste l’elemento neutro 0 (vettore nullo) ed esiste l’opposto ... Leggi Tutto
CATEGORIA: CORPI CELESTI – COSMOLOGIA – DISCIPLINE STRUMENTI E TECNICHE DI RICERCA – TEMI GENERALI – ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – GEOGRAFIA FISICA – GEOMETRIA – DISCIPLINE – DIRITTO COMUNITARIO E DIRITTO INTERNAZIONALE – STORIA E FILOSOFIA DEL DIRITTO – DOTTRINE TEORIE E CONCETTI – FILOSOFIA DEL DIRITTO – METAFISICA – POLITOLOGIA – TRASPORTI AEREI
TAGS: COMPLEMENTARE DI UN INSIEME – POSTULATO DELLE PARALLELE – CAMPO MAGNETICO TERRESTRE – OSSERVATORIO ASTRONOMICO – CORRISPONDENZA BIUNIVOCA
Mostra altri risultati Nascondi altri risultati su spazio (10)
Mostra Tutti

gruppo

Enciclopedia on line

Biologia G. sanguigni Strutture antigeniche presenti sulla superficie dei globuli rossi e riconosciute da anticorpi specifici (➔ gruppi sanguigni). G. tissutali Insieme di individui istocompatibili, tra [...] in quella additiva), il g. si dice abeliano o commutativo; in tal caso si adotta abitualmente la scrittura additiva. Esempi G è generato, si chiama un sistema di generatori. Caratteri di un gruppo Dato un g. abeliano G, finito, di elementi a1, a2, ... Leggi Tutto
CATEGORIA: BIOCHIMICA – BIOINGEGNERIA – FISIOLOGIA GENERALE – ISTOLOGIA – CHIMICA INORGANICA – CHIMICA ORGANICA – ALGEBRA – ANALISI MATEMATICA – GEOMETRIA – FISIOLOGIA UMANA – ETOLOGIA – SISTEMATICA E ZOONIMI – ISTITUZIONI ENTI MINISTERI – AZIENDE IMPRESE SOCIETA INDUSTRIE – PSICOTERAPIA – ANTROPOLOGIA CULTURALE – SOCIOLOGIA – FORME E STRUMENTI DI GOVERNO – POLITOLOGIA – ELETTROTECNICA
TAGS: RADICI N-ESIME DELL’UNITÀ – CORRISPONDENZA BIUNIVOCA – GENERATORI DI UN GRUPPO – NUMERI INTERI RELATIVI – MECCANICA QUANTISTICA
Mostra altri risultati Nascondi altri risultati su gruppo (7)
Mostra Tutti

omotopia

Enciclopedia on line

In matematica, la corrispondenza generata tra due catene di un complesso, e più in generale tra due applicazioni, quando la prima può deformarsi con continuità nella seconda. La teoria dell’o. costituisce [...] o. di dimensione qualunque n>1 di uno spazio topologico T. A differenza del gruppo fondamentale, essi sono sempre commutativi: si indicano con il simbolo πn(T) e si definiscono a partire dalle applicazioni di una superficie sferica n-dimensionale ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: CLASSI DI EQUIVALENZA – GRUPPO FONDAMENTALE – STRUTTURA ALGEBRICA – SPAZIO TOPOLOGICO – COMMUTATIVO
Mostra altri risultati Nascondi altri risultati su omotopia (4)
Mostra Tutti

Geometria non commutativa

Enciclopedia del Novecento II Supplemento (1998)

Geometria non commutativa Irving E. Segal Sommario: 1. Introduzione. 2. La meccanica quantistica e l'algebra degli operatori. 3. Le forme differenziali quantistiche. 4. Le C*-algebre e la loro teoria [...] -von Neumann è stato il primo teorema non banale di struttura per una rappresentazione unitaria infinito-dimensionale di un gruppo non commutativo e per tale ragione rappresenta un prototipo molto importante per la teoria infinito-dimensionale dei ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – TEORIA DEL CAMPO QUANTISTICO – ELETTRODINAMICA QUANTISTICA – OPERATORE LINEARE CONTINUO – TEORIA DELL'INTEGRAZIONE
Mostra altri risultati Nascondi altri risultati su Geometria non commutativa (13)
Mostra Tutti

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea Jeremy Gray Dalla geometria proiettiva alla geometria euclidea La geometria proiettiva La carriera del matematico francese [...] caso non euclideo neppure formano un gruppo ‒ costituiscono un sottogruppo normale. La maggiore semplicità della geometria euclidea si deve alla presenza di un ampio sottogruppo commutativo e questa caratteristica, sorprendentemente, rappresenterebbe ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] bivariante di Kasparov. Un esempio fondamentale di algebra C* al quale si applica la teoria è l'anello di gruppo di un gruppo discreto; quindi non è certo opportuno limitarsi ad algebre commutative. Sia A un'algebra C*, e siano K0(A) e K1(A) i suoi ... Leggi Tutto
CATEGORIA: GEOMETRIA

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] dalle classi di coomologia di grado pari. È questo un anello commutativo con unità 1∈H0(V). Per comprendere come la struttura Γ) è l'insieme dei lati di Γ, si consideri la cella Il gruppo (finito) Aut(Γ) degli automorfismi di Γ agisce su cΓ e si ... Leggi Tutto
CATEGORIA: GEOMETRIA
1 2
Vocabolario
commutativo
commutativo agg. [der. di commutare]. – 1. Che commuta o è relativo al commutare: giustizia c., che consiste nel rendere il corrispondente di quello che si riceve. In diritto, contratto c., quello in cui le prestazioni reciproche sono stabilite...
gruppo
gruppo s. m. [dal germ. kruppa]. – 1. Insieme di più cose o persone, distinte l’una dall’altra, ma riunite insieme in modo da formare un tutto: un g. di case, di persone; un g. di stelle; un g. d’aziende; g. familiare, costituito dai membri...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali