stereografia matematica In geometria, metodo di rappresentazione grafica di un solido sopra un piano. Proiezione stereografica di una sfera Fissato un punto N (polo) su una sfera (fig. 1) e un piano π [...] di una tale corrispondenza tra una quadrica e un piano sta nel fatto che lo studio delle curve e della loro geometria sopra una quadrica si può ricondurre a quello di particolari sistemi di curve piane.
In cartografia, proiezione stereografica polare ...
Leggi Tutto
teorema di Gauss-Bonnet
Luca Tomassini
Importante teorema della geometria differenziale, secondo il quale la caratteristica di Euler χ di una varietà compatta bidimensionale M è legata all’integrale [...] ammette infine una generalizzazione al caso di varietà riemanniane regolari e compatte di dimensione pari 2d, detto teorema di Gauss-Bonnet-Chern. Quest’ultimo è una conseguenza del teorema dell’indice di Atiya-Singer.
→ Geometria differenziale ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] dei lavori di Cartan sui sistemi differenziali e i gruppi di Lie ma che è ugualmente valida per i lavori sulla geometria.
Le connessioni erano state studiate a fondo nei primi anni Trenta del XX sec., in particolare dalla scuola di Princeton sotto ...
Leggi Tutto
In matematica, termine coniato nel 1975 dal matematico francese B. Mandelbrot per indicare un particolare ente geometrico la cui forma è invariante nel cambiamento della scala delle lunghezze (proprietà [...] in alcuni casi, può non coincidere con DF). Si deve sottolineare che DF può essere non intera e che per un oggetto geometrico regolare essa coincide con la dimensione topologica. I f. sono oggetti per i quali DF è maggiore della dimensione topologica ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] dell'anello locale OP in P è uguale alla dimensione del quoziente mP/(mP)2.
Un altro matematico che si convertì alla geometria algebrica negli anni Trenta del XX sec. fu il francese André Weil (1906-1998). Egli fu uno dei matematici di punta del ...
Leggi Tutto
Matematica
Insieme alla retta e al piano, uno degli enti fondamentali della geometria, la cui nozione intuitiva corrisponde all’idea di una posizione sulla retta, nel piano o nello spazio (si tratta cioè [...] p. Fournier, di 0,349 mm, introdotto dal francese P.-S. Fournier sempre nel 18° secolo.
Fisica
P. materiale P. geometrico al quale si associa una massa; per es., a p. materiali possono essere assimilati, in prima approssimazione, nella balistica i ...
Leggi Tutto
L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele
Peter Schreiber
Geometria analitica, delle curve e delle superfici. Il problema delle parallele
A [...] passaggio per n(n+3)/2 punti. Nel 1720 seguiva un testo di Colin Maclaurin (1698-1746) sullo stesso tema ‒ la Geometria organica sive descriptio linearum curvarum universalis ‒, nel quale l'autore osservava che una curva di ordine n e una di ordine m ...
Leggi Tutto
In matematica, concetto introdotto nel 1935 da H. Whitney in relazione a problemi di topologia e geometria delle varietà. Ha dato luogo a una teoria che ha avuto un enorme sviluppo, specialmente in connessione [...] e delle sue applicazioni. Così, è da rilevare che ogni moderna teoria di gauge (➔) si basa sullo studio della geometria affine di un f. vettoriale, mentre la struttura globale dei f. permette la formalizzazione del concetto di istantone e della ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I fondamenti della geometria
Umberto Bottazzini
I fondamenti della geometria
Verso la metà del XIX sec. Georg Friedrich Bernhard Riemann (1826-1866) [...] purezza del metodo passa in secondo piano e alcune volte anche il rigore, come si era già verificato nella storia della geometria.
Segre presenta queste idee in un articolo del 1891 che provoca l'immediata reazione di Peano. Di fronte al pragmatismo ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] dei punti, rette e piani ha una struttura non unica, ma dipendente dal sistema di postulati che viene messo a base della geometria; a seconda dei casi si ha allora la struttura di s. proiettivo, s. metrico, s. grafico, s. vettoriale ecc. Secondo tale ...
Leggi Tutto
geometria
geometrìa s. f. [dal lat. geometrĭa, gr. γεωμετρία, comp. di γῆ «terra» (v. geo-) e -μετρία «misurazione» (v. -metria)]. – 1. In senso ampio e generico, lo studio dello spazio e delle figure spaziali, originariamente sviluppatosi...
geometra
geòmetra s. m. e f. [dal lat. geomĕtres o geomĕtra, gr. γεωμέτρης; v. geometria] (pl. m. -i). – 1. a. Chi studia, conosce e applica i principî e le regole della geometria: Euclide geomètra (Dante). b. Più comunem., professionista...