L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] a spazi proiettivi di dimensione arbitraria, aprendo la strada allo studio da un punto di vista proiettivo della geometria non euclidea a più dimensioni. Verso la metà degli anni Ottanta, Segre trovò molti risultati importanti validi per questi spazi ...
Leggi Tutto
Il Rinascimento. Le arti matematiche
Eberhard Knobloch
Ivo Schneider
Le arti matematiche
Il concetto di scienze matematiche
di Eberhard Knobloch
Il Rinascimento riprese dal Medioevo il concetto delle [...] '. Una testimonanza significativa di ciò è lo scolio di Clavio alla I, 1 (che è un problema geometrico) degli Elementi euclidei. In questo scolio Clavio, presumibilmente rifacendosi al Commentarium di Alessandro Piccolomini e al commento a Euclide di ...
Leggi Tutto
Scienza indiana. La scienza nella cultura indiana
Frits Staal
La scienza nella cultura indiana
Il concetto di scienza e la classificazione delle scienze
Per designare le conoscenze sistematiche indiane [...] , fino al rinvenimento di una nuova prova, di un caso d'invenzione indipendente, analogo a quello della geometria non euclidea.
Perché, al contrario delle scoperte di Leibniz e di altri scienziati europei, le invenzioni della scuola di Mādhava ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Gli archimedei e i problemi infinitesimali
Roshdi Rashed
Gli archimedei e i problemi infinitesimali
La storia della geometria infinitesimale, [...] ad alcun'altra, in quanto si pone per così dire nella prospettiva della geometria archimedea con gli strumenti della geometria sferica; siamo ben lontani dal quadro euclideo. Per illustrare tutto ciò veniamo agli elementi di questa teoria.
Ibn al ...
Leggi Tutto
La scienza bizantina e latina: la nascita di una scienza europea. Le discipline matematiche
Menso Folkerts
Richard P. Lorch
Anne Tihon
Le discipline matematiche
La matematica nell'Europa latina
di [...] tradizione di trattati di aritmetica nel XIII e XIV sec.; per quanto riguarda la geometria è interessante notare che, accanto alla tradizione euclidea, esistevano anche numerosi trattatelli riguardanti la geodesia e i procedimenti per la misurazione ...
Leggi Tutto
Scienza greco-romana. Euclide e la matematica del IV secolo
Reviel Netz
Euclide e la matematica del IV secolo
Sappiamo del IV sec. a.C. più di quanto non sappiamo del V, ma è sempre molto poco. Fra [...] passo più importante nella direzione della ricerca logica nel quadro dell’assiomatica della geometria (ricerca che doveva portare alla costruzione delle geometrie non euclidee); poi fu compito dei matematici del XIX sec. dimostrare l’indipendenza di ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. Le innovazioni di Luca Valerio e di Bonaventura Cavalieri
Pier Daniele Napolitani
Le innovazioni di Luca Valerio e di Bonaventura Cavalieri
L'eredità [...] significa per lui cercare di far rientrare le idee innovatrici che propone nella teoria euclidea delle proporzioni.
Questa duplice esigenza (rigorose dimostrazioni geometriche e generalità dell'oggetto cui esse si devono applicare) è all'origine non ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] sec., quando fu meglio conosciuto, si basava sull'affermazione dell'esistenza di diverse geometrie (proiettiva, affine, euclidea e anche non euclidea), ognuna caratterizzata da un gruppo di trasformazioni: le proprietà invarianti rispetto al gruppo ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] dei numeri e con diversi altri settori della matematica (come la teoria algebrica degli invarianti e la geometria, in particolare la geometria non euclidea) e con la fisica, anche se i legami con quest'ultima si accentueranno soprattutto nel XX ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Algebra, geometria, indivisibili
Enrico Giusti
Primi progressi nell’algebra
Dopo un periodo di gestazione lungo tre secoli, l’algebra è la prima disciplina in cui nel Cinquecento si registrano sostanziali [...] corrispondente. Nella loro formalizzazione, Cavalieri si rivolge naturalmente alla teoria delle proporzioni euclidea, che sola poteva fornire un linguaggio ‘geometrico’, cioè rigoroso, nel quale inserire le nuove classi di grandezze.
Il secondo ...
Leggi Tutto
geometria
geometrìa s. f. [dal lat. geometrĭa, gr. γεωμετρία, comp. di γῆ «terra» (v. geo-) e -μετρία «misurazione» (v. -metria)]. – 1. In senso ampio e generico, lo studio dello spazio e delle figure spaziali, originariamente sviluppatosi...
euclideo
euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....