• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
289 risultati
Tutti i risultati [568]
Matematica [289]
Biografie [139]
Fisica [105]
Fisica matematica [64]
Storia della matematica [51]
Analisi matematica [44]
Algebra [43]
Geometria [37]
Temi generali [36]
Storia della fisica [34]

metrica riemanniana

Enciclopedia della Scienza e della Tecnica (2008)

metrica riemanniana Luca Tomassini Un tensore g di rango 2 definito su una varietà differenziabile n-dimensionale che sia covariante, ­simmetrico e definito positivo. In ogni spazio tangente TπMν nel [...] il funzionale l è detta geodetica e ogni curva di lunghezza minima tra due punti p,q∈Mν è tale. Viceversa, solo gedetiche di lunghezza sufficientemente piccola sono curve di lunghezza minima. → Geometria differenziale; Variazioni, calcolo delle ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: VARIETÀ DIFFERENZIABILE – GEOMETRIA DIFFERENZIALE – SPAZIO VETTORIALE – PRODOTTO SCALARE – CAMPO TENSORIALE
Mostra altri risultati Nascondi altri risultati su metrica riemanniana (1)
Mostra Tutti

teorema di Gauss-Bonnet

Enciclopedia della Scienza e della Tecnica (2008)

teorema di Gauss-Bonnet Luca Tomassini Importante teorema della geometria differenziale, secondo il quale la caratteristica di Euler χ di una varietà compatta bidimensionale M è legata all’integrale [...] ammette infine una generalizzazione al caso di varietà riemanniane regolari e compatte di dimensione pari 2d, detto teorema di Gauss-Bonnet-Chern. Quest’ultimo è una conseguenza del teorema dell’indice di Atiya-Singer. → Geometria differenziale ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – TEOREMA DI GAUSS-BONNET – VARIETÀ RIEMANNIANE – CURVA REGOLARE – GEODETICA

Pauli Wolfgang

Dizionario delle Scienze Fisiche (1996)

Pauli Wolfgang Pauli 〈pàuli〉 Wolfgang [STF] (Vienna 1900 - Zurigo 1958) Prof. di fisica teorica nell'univ. di Amburgo (1923), nel politecnico di Zurigo (1928), nell'Institute for advanced study di Princeton, [...] opposto: v. meccanica quantistica: III 708 c. ◆ [PRB] Propagatore formale di P.-Van-Vleck-de Witt: v. geometria differenziale stocastica: III 40 d. ◆ [MCQ] Regolarizzazione di P.-Villars: v. elettrodinamica quantistica: II 304 b. ◆ [FSD] Suscettività ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA DEI SOLIDI – FISICA MATEMATICA – MECCANICA QUANTISTICA – STORIA DELLA FISICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: INSTITUTE FOR ADVANCED STUDY – ELETTRODINAMICA QUANTISTICA – GEOMETRIA DIFFERENZIALE – SUSCETTIVITÀ MAGNETICA – MECCANICA QUANTISTICA
Mostra altri risultati Nascondi altri risultati su Pauli Wolfgang (2)
Mostra Tutti

zumeroni

Enciclopedia della Scienza e della Tecnica (2008)

zumeroni Francesco Calogero Il termine zumerone deriva dall’inglese zoomeron, coniato modificando soliton (solitone) e basandosi sull’analogia con boomeron (bumerone), nonché sul fatto che per l’equazione [...] è stata investigata nell’ambito dello studio delle equazioni non lineari di evoluzione integrabili. Essa è stata successivamente identificata con un’equazione rilevante in geometria differenziale, introdotta quasi un secolo prima in tale contesto dal ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – GEOMETRIA DIFFERENZIALE – EQUAZIONI SOLITONICHE – NOVECENTO

tensore di Ricci

Enciclopedia della Scienza e della Tecnica (2008)

tensore di Ricci Gilberto Bini Sia M una varietà dotata di una metrica riemanniana. Indichiamo rispettivamente con gij e con Rijkl le espressioni locali della metrica riemanniana e delle componenti [...] da quelli della metrica euclidea a meno di termini quadratici. Rispetto a tali coordinate la forma di volume di M si esprime in termini della forma di volume euclideo a meno di termini che coinvolgono il tensore di Ricci. → Geometria differenziale ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – VARIETÀ RIEMANNIANA – METRICA EUCLIDEA – SPAZIO EUCLIDEO – MATRICE INVERSA
Mostra altri risultati Nascondi altri risultati su tensore di Ricci (1)
Mostra Tutti

varieta kahleriana

Enciclopedia della Scienza e della Tecnica (2008)

varietà kähleriana Gilberto Bini Una metrica riemanniana su una varietà complessa M è detta hermitiana se definisce un prodotto interno hermitiano su ciascuno spazio tangente. Una metrica hermitiana [...] -Study. Generalmente una sottovarietà complessa di una varietà kähleriana eredita la metrica ed è anch’essa una varietà kähleriana. In particolare, ogni varietà algebrica proiettiva è kähleriana. → Geometria differenziale; Matematica: problemi aperti ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – METRICA RIEMANNIANA – FORMA DIFFERENZIALE – VARIETÀ KÄHLERIANA – VARIETÀ COMPLESSA

simboli di Christoffel

Enciclopedia della Scienza e della Tecnica (2008)

simboli di Christoffel Gilberto Bini Sia M una varietà dotata di una metrica riemanniana. Ricordiamo che essa si può esprimere localmente nella forma dove (gik) è una matrice n×n hermitiana definita [...] -Civita, un operatore molto importante che fornisce un metodo per valutare la velocità con cui i vettori e i tensori variano sulla varietà. In simboli, l’operatore ∇ dato da prende il nome di connessione di Levi-Civita. → Geometria differenziale ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – METRICA RIEMANNIANA – MATRICE INVERSA – TENSORI
Mostra altri risultati Nascondi altri risultati su simboli di Christoffel (1)
Mostra Tutti

TENSORIALE, ALGEBRA e ANALISI

Enciclopedia Italiana - IV Appendice (1981)

TENSORIALE, ALGEBRA e ANALISI Dionigi Galletto Il calcolo t., sinonimo di calcolo differenziale assoluto (v. differenziale assoluto, calcolo, XII, p. 796; tensore, XXXIII, p. 497), i cui fondamenti [...] sono di solito chiamati "tensori euclidei". Posto G = det ∥ gij ∥, un tensore euclideo dispari che interviene frequentemente in geometria differenziale e in fisica matematica è il l "tensore dispari di Ricci", che ha le componenti covarianti date da ... Leggi Tutto

WEINGARTEN, Julius

Enciclopedia Italiana (1937)

WEINGARTEN, Julius Giovanni Sansone Matematico, nato a Berlino il 25 marzo 1836, morto a Friburgo in B. il 16 giugno 1910. Insegnò dal 1879 al 1903 meccanica, teoria della elasticità con applicazioni [...] int. dei mat., I, Roma 1909, p. 111), e sulle ricerche del W. si fondano interi capitoli dei classici trattati di geometria differenziale di L. Bianchi e del Darboux. Per dar conto dei più notevoìi resultati del W. occorre anzitutto ricordare che una ... Leggi Tutto

Weil, André

Enciclopedia Italiana - VI Appendice (2000)

Weil, André Luca Dell'Aglio Matematico francese, nato a Parigi il 6 maggio 1906, morto a Princeton il 6 agosto 1998. La sua formazione si svolse fra Parigi, presso l'École normale supérieure, Roma e [...] dei fondatori: le sue ricerche hanno contribuito a chiarire profonde connessioni intercorrenti tra topologia, geometria differenziale e geometria analitica complessa, come nel caso degli studi sull'estensione della teoria dell'integrazione all'ambito ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: INSTITUTE FOR ADVANCED STUDY – TEORIA DELL'INTEGRAZIONE – GEOMETRIA DIFFERENZIALE – GEOMETRIA ALGEBRICA – GEOMETRIA ANALITICA
Mostra altri risultati Nascondi altri risultati su Weil, André (1)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 13 ... 29
Vocabolario
geometrìa
geometria geometrìa s. f. [dal lat. geometrĭa, gr. γεωμετρία, comp. di γῆ «terra» (v. geo-) e -μετρία «misurazione» (v. -metria)]. – 1. In senso ampio e generico, lo studio dello spazio e delle figure spaziali, originariamente sviluppatosi...
differenziale
differenziale agg. e s. m. [der. di differenza]. – 1. agg. a. Delle differenze, che tien conto delle differenze, che stabilisce o intende stabilire una differenza: pretendere, ottenere, concedere un trattamento d.; pedagogia d., che distingue...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali