In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali.
Cenni storiciL’antichità
- L’origine della g. è legata a concreti problemi di misurazione del terreno (nacque [...] metodo di Cartesio), cioè associando a ciascun ente geometrico di una certa famiglia un insieme ordinato di numeri, ‘metrica’ nella varietà, che prende il nome di varietà riemanniana. A partire dall’espressione del ds2 è possibile definire l’angolo ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometriariemanniana. 4. Varietà complesse e varietà kähleriane. [...] Ricci-Curbastro e T. Levi-Civita (v., 1900) svilupparono il calcolo tensoriale come un potente strumento per la geometriariemanniana. Il calcolo tensoriale risultò essere precisamente ciò di cui A. Finstein aveva bisogno per descrivere la sua teoria ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] non commutativa sono soddisfatti in questo caso.
Tali costruzioni sono state generalizzate da chi scrive alle deformazioni isospettrali di geometrieriemanniane di rango >1, in due lavori, uno del 2001 assieme a Giovanni Landi e l'altro del 2002 ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] plausibili dal punto di vista fisico era in contrasto con la concezione della geometria differenziale riemanniana, che sembrava offrire un'infinità di geometrie, e con la relatività generale, che ne proponeva esattamente una. La discussione si ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] negli interessi della scuola italiana. È la combinazione di difficoltà tecniche e di potenza propria della geometria intrinseca riemanniana che doveva colpire Einstein.
Le previsioni di Einstein fecero grande impressione. Egli stupì gli esperti ...
Leggi Tutto
GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] curva di un qualunque suo punto dato.
L'esito di queste applicazioni geometriche è lo sviluppo di un approccio algebrico-geometrico alla teoria analitica riemanniana. Questo complesso e ambizioso programma viene intrapreso negli anni settanta del ...
Leggi Tutto
Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] noto che su una varietà kahleriana le strutture complesse e riemanniane sono date e inoltre, associata a queste (e ben anche in altri problemi: la teoria di Il´jašenko si dice geometrica, mentre l'approccio di Écalle è associato a un nuovo metodo di ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] .
Un caso già molto interessante e comunque di grande rilevanza geometrica è quello in cui la varietà V si riduce a un visto come un modo di discretizzare il dato di una metrica riemanniana su C (e dunque di una struttura complessa) concentrandone ...
Leggi Tutto
Variazioni, calcolo delle
Gianni Dal Maso
Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze dipendenti da variabili di tipo numerico [...] i suoi valori in un'altra varietà riemanniana. In tal caso i punti stazionari sono le mappe armoniche tra le due varietà, lo studio delle quali è legato a interessanti questioni di topologia e di geometria differenziale.
Superfici cartesiane di area ...
Leggi Tutto
L'Ottocento: matematica. La geometria non euclidea
Rossana Tazzioli
La geometria non euclidea
Alla base dei suoi Elementi Euclide aveva posto un certo numero di definizioni (o 'termini') e di assiomi [...] inizialmente il significato di un generico insieme di punti, viene poi dotata di una struttura geometrica che prefigura il moderno concetto di varietà riemanniana. In termini moderni, uno spazio a n-dimensioni senza cuspidi o altri punti irregolari ...
Leggi Tutto
geometria
geometrìa s. f. [dal lat. geometrĭa, gr. γεωμετρία, comp. di γῆ «terra» (v. geo-) e -μετρία «misurazione» (v. -metria)]. – 1. In senso ampio e generico, lo studio dello spazio e delle figure spaziali, originariamente sviluppatosi...
riemanniano
〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...