Fisica matematica
Andrei Tjurin
Vieri Mastropietro
L'interazione fra fisica e matematica è divenuta ancora più proficua negli ultimi anni. Nelle ricerche sulle interazioni fondamentali (gravitazionali, [...] nel modello di Ising.
Applicazioni delle teorie di gauge alla geometria in dimensione bassa
di Andrei Tjurin
A partire dal 1982 la teoria di Yang-Mills per le metriche riemanniane è stata applicata con successo a problemi di topologia differenziale ...
Leggi Tutto
L'Ottocento: matematica. Meccanica analitica
Helmut Pulte
Meccanica analitica
La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] Otto Sigismund Lipschitz sui principî variazionali della meccanica e sul principio di Gauss in relazione con la geometriariemanniana (1872, 1877) spinsero Heinrich Rudolf Hertz a sviluppare ulteriormente in Die Prinzipien der Mechanik (I principî ...
Leggi Tutto
affinita
affinità [Der. di affine] [ALG] (a) Particolare omografia tra due piani in cui si corrispondono le rette improprie. (b) Nella geometria delle varietà, corrispondenza tra gli enti geometrici [...] il parallelismo tra vettori nello spazio euclideo. Nella geometriariemanniana l'a. è determinata dalla metrica ed espressa mediante i simboli di Christoffel, ma in geometrie più generali, dette appunto geometrie affini, l'a. è governata da variabili ...
Leggi Tutto
pitagorico
pitagòrico [agg. (pl.m. -ci) Der. del nome Pitagora] [ALG] Equazione p.: l'equazione algebrica x2+y2=z2 in cui si traduce il teorema di Pitagora, con x e y lunghezza del cateti e z lunghezza [...] del-l'ipotenusa. ◆ [ALG] Forma p.: → riemanniano: Geometriariemanniana. ◆ [ALG] Numeri o terne p.: sono le soluzioni intere positive dell'equazione p.; tali terne (x, y, z) sono tutte e solo quelle espresse dalla formula x=m2-n2, y=2mn, z=m2+n2, con ...
Leggi Tutto
distanza
distanza [Der. del lat. distantia, dal part. pres. distans -antis di distare "stare lontano", comp. di dis- e stare] [ALG] La lunghezza del tratto di linea retta che congiunge due punti, o, [...] che permette di definire matematicamente un segmento di retta tra due punti e la sua lunghezza; tale struttura è la geometriariemanniana. ◆ [ALG] D. angolare: tra due punti A, B, relativ. a un terzo punto O (per es., nell'ottica, il punto d ...
Leggi Tutto
ellittico
ellìttico [agg. (pl.m. -ci) Der. di ellisse "che riguarda l'ellisse"] [ALG] [ANM] Qualifica che in vari casi discende dalla proprietà dell'ellisse, che la distingue dalle altre coniche, di [...] parallele, in essa non esiste alcuna retta che sia parallela a una retta data e passi per un punto dato: → riemanniano: Geometriariemanniana. ◆ [ANM] Integrali e.: hanno la forma generale u=∫₀xR(x,Q1/2)dx, dove R è una funzione razionale dei suoi ...
Leggi Tutto
metrico
mètrico [agg. (pl.m. -ci) Der. del gr. metrikós, da métron "misura"] [ALG] Relativo a una metrica, cioè al concetto di misura della distanza in uno spazio. ◆ [MTR] (a) Che concerne una misurazione [...] m.: quella che studia questioni m., quale, in campo elementare, l'ordinaria geometria euclidea e, in campo più elevato, la geometriariemanniana. ◆ [ELT] Onde m.: le onde radio la cui lunghezza d'onda va da 1 a 10 m, cioè la cui frequenza va ...
Leggi Tutto
geometriageometrìa [Der. del gr. gÝeometría, comp. di G✄è "Terra" e -metría "misurazione della Terra" (intesa soprattutto come porzioni di superficie terrestre), e dunque propr. "agrimensura", come [...] enti quali, per es., le varietà differenziabili, le varietà riemanniane e i fibrati, per i quali si rinvia alle voci relative. ◆ [PRB] G. differenziale stocastica: v. geometria differenziale stocastica. ◆ [FNC] G. di riflessione, di trasmissione: v ...
Leggi Tutto
L'evoluzione temporale dei sistemi - in particolare di quelli deterministici, cioè tali che la conoscenza del sistema a un dato istante ne determina tutta l'evoluzione futura - è stata negli ultimi decenni [...] nei poligoni
Numerosi problemi di geometria, topologia, sistemi dinamici e anche di fisica dello stato solido conducono a considerare lo studio dei flussi geodetici su superfici chiuse dotate di una metrica riemanniana piatta con singolarità di tipo ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] che ogni varietà riemanniana di dimensione n può essere immersa in modo isometrico in uno spazio euclideo di dimensione sufficientemente alta. Questo risultato, di grande importanza poiché unifica due branche della geometria differenziale, viene ...
Leggi Tutto
geometria
geometrìa s. f. [dal lat. geometrĭa, gr. γεωμετρία, comp. di γῆ «terra» (v. geo-) e -μετρία «misurazione» (v. -metria)]. – 1. In senso ampio e generico, lo studio dello spazio e delle figure spaziali, originariamente sviluppatosi...
riemanniano
〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...