• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
15 risultati
Tutti i risultati [61]
Geometria [15]
Matematica [44]
Biografie [12]
Analisi matematica [10]
Storia della matematica [7]
Fisica [7]
Fisica matematica [7]
Storia della fisica [6]
Biologia [5]
Algebra [5]

singolarità

Enciclopedia on line

singolarità fisica In fluidodinamica, qualsiasi punto del campo di moto di un fluido irrotazionale, non viscoso e a densità costante in cui la funzione potenziale di velocità Φ assuma valore infinito o [...] , o anche di un altro ente matematico, che tuttavia si possa sempre ricondurre a una funzione. S. di una funzione olomorfa (o analitica) Data una f definita in un dominio D, e olomorfa in un sottoinsieme di D, si dice che la f ha una s. in un punto ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA DEI FLUIDI – ANALISI MATEMATICA – GEOMETRIA
TAGS: FUNZIONE VETTORIALE – CURVA ALGEBRICA – FLUIDODINAMICA – RETTA TANGENTE – IRROTAZIONALE
Mostra altri risultati Nascondi altri risultati su singolarità (3)
Mostra Tutti

Geometria non commutativa

Enciclopedia del Novecento II Supplemento (1998)

Geometria non commutativa Irving E. Segal Sommario: 1. Introduzione. 2. La meccanica quantistica e l'algebra degli operatori. 3. Le forme differenziali quantistiche. 4. Le C*-algebre e la loro teoria [...] rispettivamente della sottoalgebra P- generata da H*) assieme con 1 sono chiamati polinomiali (non funzioni polinomiali) olomorfi (rispettivamente anti-olomorfi). Una funzione a valori complessi f su H (assunto di dimensione maggiore di uno) è intera ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – TEORIA DEL CAMPO QUANTISTICO – ELETTRODINAMICA QUANTISTICA – OPERATORE LINEARE CONTINUO – TEORIA DELL'INTEGRAZIONE
Mostra altri risultati Nascondi altri risultati su Geometria non commutativa (13)
Mostra Tutti

Geometria algebrica

Enciclopedia del Novecento II Supplemento (1998)

GEOMETRIA ALGEBRICA Ciro Ciliberto Igor R. Shafarevich Lo sviluppo delle idee di Ciro Ciliberto Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] sulla superficie, si scrivono come f (z1, z2) dz1 + g (z1, z2) dz2, con f (z1, z2) e g (z1, z2) funzioni olomorfe), alla metà del primo numero di Betti della superficie, alla dimensione della varietà di Picard della superficie. Un risultato basilare ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – ACCADEMIA NAZIONALE DELLE SCIENZE DETTA DEI XL – EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – SCUOLA ITALIANA DI GEOMETRIA ALGEBRICA – CARATTERISTICA DI EULERO-POINCARÉ
Mostra altri risultati Nascondi altri risultati su Geometria algebrica (2)
Mostra Tutti

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] spettro è reale e si può agire su di essa con una qualunque funzione misurabile. In generale si può agire su una variabile complessa solo con funzioni olomorfe, e ciò è esattamente quanto accade per operatori non autoaggiunti. In questo dizionario ... Leggi Tutto
CATEGORIA: GEOMETRIA

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] che permettono di svolgere, sulla superficie S, una teoria delle funzioni olomorfe e meromorfe completamente analoga a quella classica. Il secondo dato è costituito da due funzioni meromorfe z e w di ℳ(S). Questi dati definiscono un'applicazione ... Leggi Tutto
CATEGORIA: GEOMETRIA

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] una varietà (reale) lo spazio euclideo reale Rn con lo spazio euclideo complesso Cn e le funzioni differenziabili con le funzioni olomorfe (cioè analitiche complesse), si arriva alla definizione di ‛varietà complessa'. Così una varietà complessa M è ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] soltanto un esempio, un fascio utile è quello dei germi delle funzioni olomorfe su una varietà complessa, che si ottiene considerando le funzioni olomorfe definite su aperti della varietà. Se f è una tale funzione, definita su un aperto U, e g e V ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA

spazio analitico

Enciclopedia della Scienza e della Tecnica (2008)

spazio analitico Gilberto Bini Un fascio ℱ su uno spazio topologico X è l’unione di una famiglia di gruppi abeliani (o anelli, o moduli) ℱx, uno per ogni punto x di X, che chiameremo spighe. Denotando [...] Sia U un aperto di ℂn e sia S un sottospazio di U. Sia O il fascio di ideali di O costituito da germi di funzioni olomorfe che si annullano su S. Se x∩S, allora Ox/ℒx={0}, cosicché il fascio O/ℒ è ‘concentrato’ su S. Indicheremo con OS la restrizione ... Leggi Tutto
CATEGORIA: GEOMETRIA

superfici minime

Enciclopedia della Scienza e della Tecnica (2008)

superfici minime Luca Tomassini Superfici la cui curvatura media H è zero in tutti i punti. La prima ricerca sulle superfici minime risale a Joseph-Louis Lagrange, che considerò il problema di determinare [...] Weierstrass, il quale esibì una formula che esprime una superficie minima semplicemente connessa S(x,y,z) in termini di due funzioni olomorfe f(w) e g(w) definite sul disco o nell’intero piano di variazione delle coordinate isoterme intrinseche (u,v ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – GEOMETRIA
TAGS: ANALISI MATEMATICA – KARL WEIERSTRASS – JOSEPH PLATEAU – ELICOIDE
Mostra altri risultati Nascondi altri risultati su superfici minime (1)
Mostra Tutti
1 2
Vocabolario
olomòrfo
olomorfo olomòrfo agg. [comp. di olo- e -morfo]. – In matematica, sinon. di analitico, usato quando si considerino funzioni di una o più variabili complesse.
sinèttico
sinettico sinèttico agg. [dal gr. συνεκτικός «che comprende, che contiene»]. – In matematica, funzione s., nome, ormai caduto in disuso, dato da taluni autori alle funzioni olomorfe (v. funzione, n. 5 b).
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali