matrice jacobiana
Luca Tomassini
Generalizzazione al caso difunzionidipiùvariabili a valori vettoriali del concetto di derivata di una funzione scalare g:ℝ→ℝ. Più precisamente, si chiama matrice [...] detJ (determinante jacobiano) è definito (e sarà una funzionedi x∈ℝν). Uno dei più importanti teoremi dell’analisi matematica classica, il teorema della funzione inversa, afferma che una funzione f:ℝν→ℝν è invertibile in un intorno opportuno ...
Leggi Tutto
Concetto fondamentale nell’analisi matematica e nelle sue applicazioni che esprime, date due grandezze l’una funzione dell’altra (per es., in fisica, lo spazio percorso e il tempo impiegato a percorrerlo, [...] regole valgono anche per le funzionidipiùvariabili pur di convenire che D indichi una determinata operazione di derivazione parziale, rispetto ad alcune determinate variabili.
Derivazione della funzione inversa Se la funzione y=f(x) è derivabile ...
Leggi Tutto
Successione ordinata e continua di elementi, concreti e astratti, dello stesso genere.
Ecologia
Successione delle comunità che si sostituiscono l’una all’altra in una regione. Le comunità di transizione [...] ); l’ultimo fatto va sotto il nome di fenomeno di Gibbs. Tutte le considerazioni sopra esposte si estendono alle funzionidipiùvariabili, periodiche rispetto a ciascuna di esse, anche con periodi diversi; si fa uso in tal caso delle serie multiple ...
Leggi Tutto
In matematica, operazione eseguita su una funzionedivariabile reale o complessa per determinare l’area delimitata dalla funzione stessa e dall’intervallo su cui è definita. Il termine s’incontra per [...] tendere a zero la massima ampiezza degli intervalli.
I. curvilineo. - L’i. curvilineo di una funzionedipiùvariabili, definita in una certa regione, esteso a un arco di curva C giacente nella stessa regione, si indica con il simbolo
o altri ...
Leggi Tutto
Espressione con cui si indica l’argomento di molte ricerche matematiche, intese a individuare le massime e le minime grandezze tra un certo numero di grandezze assegnate, oppure i valori massimi e minimi [...] (minimo) tra i massimi (minimi) relativi. Nell’es. precedente, il massimo assoluto
M.di una funzionedipiùvariabili reali Nel caso delle funzionidipiùvariabili reali, le definizioni precedenti vanno modificate come segue. Sia f (P)=f(x1, x2 ...
Leggi Tutto
singolarità fisica In fluidodinamica, qualsiasi punto del campo di moto di un fluido irrotazionale, non viscoso e a densità costante in cui la funzione potenziale di velocità Φ assuma valore infinito o [...] . Geometricamente ciò può configurarsi, per es. per una curva, nella mancanza di retta tangente e, per una superficie, nella mancanza di piano tangente. Per le funzionidipiùvariabili definite implicitamente, c’è una s. nei punti in cui le derivate ...
Leggi Tutto
Biologia
L’attività propria di una cellula, o di una sua parte, o di un organo, o di un sistema organico. Oggetto di studio della fisiologia, è intimamente legata alla forma o struttura, oggetto di studio [...] come somme di serie difunzionidi classe < n, non essendo esse stesse di classe <n.
Il ramo più sviluppato della teoria delle f. divariabile reale è quello delle f. reali a un valore di una (o più) variabili reali.
Funzionidi verità
In ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio difunzioni [...] e solo parzialmente, da alcuni risultati di Poincaré e di Picard.
Fu possibile sviluppare una teoria locale delle funzionidipiùvariabili complesse utilizzando le serie di potenze in piùvariabili con le relative regioni di convergenza, ma anche il ...
Leggi Tutto
L'Ottocento: matematica. Equazioni differenziali alle derivate parziali
Thomas Archibald
Equazioni differenziali alle derivate parziali
Nel corso del XIX sec. la teoria delle funzionidipiùvariabili [...] dipiùvariabili.
Sia f(x,y,z,…) una funzionedipiùvariabili x,y,z,… e supponiamo che nelle vicinanze di particolari valori X,Y,Z,… assegnati a quelle variabili, f sia continua separatamente come funzionedi x, come funzionedi y, come funzionedi ...
Leggi Tutto
L'Eta dei Lumi: matematica. Le equazioni differenziali
Silvia Mazzone
Clara Silvia Roero
Le equazioni differenziali
E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] opportunamente la prima rispetto a x e la seconda rispetto a y. Clairaut estende il risultato a funzionidipiùvariabili e determina opportuni fattori integranti; nel caso delle equazioni in tre variabili
[30] M(x,y,z)dx +N(x,y,z)dy +P(x,y,z)dz = 0 ...
Leggi Tutto
funzione
funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
variabile
variàbile agg. e s. f. [dal lat. tardo variabĭlis, der. di variare «variare»]. – 1. agg. Che varia, che può variare, che è soggetto a variare: grandezza, valore, norma v.; il prezzo è v. secondo le stagioni e la richiesta; quindi...